
Detecting Filter List Evasion With Event-Loop-Turn
Granularity JavaScript Signatures

Quan Chen
North Carolina State University

qchen10@ncsu.edu

Peter Snyder
Brave Software
pes@brave.com

Ben Livshits
Brave Software
ben@brave.com

Alexandros Kapravelos
North Carolina State University

akaprav@ncsu.edu

Abstract—Content blocking is an important part of a per-
formant, user-serving, privacy respecting web. Current content
blockers work by building trust labels over URLs. While useful,
this approach has many well understood shortcomings. Attackers
may avoid detection by changing URLs or domains, bundling
unwanted code with benign code, or inlining code in pages.

The common flaw in existing approaches is that they eval-
uate code based on its delivery mechanism, not its behavior.
In this work we address this problem by building a system
for generating signatures of the privacy-and-security relevant
behavior of executed JavaScript. Our system uses as the unit of
analysis each script’s behavior during each turn on the JavaScript
event loop. Focusing on event loop turns allows us to build
highly identifying signatures for JavaScript code that are robust
against code obfuscation, code bundling, URL modification, and
other common evasions, as well as handle unique aspects of web
applications.

This work makes the following contributions to the problem of
measuring and improving content blocking on the web: First, we
design and implement a novel system to build per-event-loop-turn
signatures of JavaScript behavior through deep instrumentation
of the Blink and V8 runtimes. Second, we apply these signatures
to measure how much privacy-and-security harming code is
missed by current content blockers, by using EasyList and
EasyPrivacy as ground truth and finding scripts that have the
same privacy and security harming patterns. We build 1,995,444
signatures of privacy-and-security relevant behaviors from 11,212
unique scripts blocked by filter lists, and find 3,589 unique scripts
hosting known harmful code, but missed by filter lists, affecting
12.48% of websites measured. Third, we provide a taxonomy of
ways scripts avoid detection and quantify the occurrence of each.
Finally, we present defenses against these evasions, in the form
of filter list additions where possible, and through a proposed,
signature based system in other cases.

As part of this work, we share the implementation of our
signature-generation system, the data gathered by applying that
system to the Alexa 100K, and 586 AdBlock Plus compatible
filter list rules to block instances of currently blocked code being
moved to new URLs.

I. INTRODUCTION

Previous research has documented the many ways content
blocking tools improve privacy, security, performance, and
user experience online (e.g., [25], [13], [24], [28]). These tools
are the current stage in a long arms race between communities
that maintain privacy tools, and online trackers who wish to
evade them.

Initially, communities identified domains associated with
tracking, and generated hosts files that would block communi-
cation with these undesirable domains. Trackers, advertisers,

and attackers reacted by moving tracking resources to domains
that served both malicious and user-serving code, circumvent-
ing host based blocking. In response, content blocking com-
munities started identifying URLs associated with undesirable
code, to distinguish security-and-privacy harming resources
from user-desirable ones, when both were served from the
same domain, such as with content delivery networks (CDNs).

URL-based blocking is primarily achieved through the
crowd-sourced generation of filter lists containing regular-
expression style patterns that determine which URLs are
desirable and which should be blocked (or otherwise granted
less functionality). Popular filter lists include EasyList (EL)
and EasyPrivacy (EP). The non-filter-list based web privacy
and security tools (e.g., Privacy Badger, NoScript, etc.) also
use URL or domain-level determinations when making access
control decisions.

However, just as with hosts-based blocking, URL-based
blocking has several well known weaknesses and can be
easily circumvented. Undesirable code can be moved to one-
off, rare URLs, making crowdsourced identification difficult.
Furthermore, such code can be mixed with benign code in a
single file, presenting content blockers with a lose-lose choice
between allowing privacy or security harm, or a broken site.
Finally, unwanted code can also be “inlined” in the site (i.e.,
injected as text into a <script> element), making URL level
determinations impossible.

Despite these well known and simple circumventions, the
privacy and research community lacks even an understanding
of the scale of the problem, let alone useful, practical defenses.
Put differently, researchers and activists know they might be
losing the battle against trackers and online attackers, but
lack measurements to determine if this is true, and if so,
by how much. Furthermore, the privacy community lacks
a way of providing practical (i.e., web-compatible) privacy
improvements that are robust regardless of how the attackers
choose to deliver their code.

Fundamentally, the common weakness in URL-based block-
ing tools is, at its root, a mismatch between the targeted
behavior (i.e., the privacy-and-security harming behavior of
scripts), and the criteria by which the blocking decisions are
made (i.e., the delivery mechanism). This mismatch allows
for straightforward evasions that are easy for trackers to
implement, but difficult to measure and defend against.

Addressing this mismatch requires a solution that is able to

identify the behaviors already found to be harmful, and base
the measurement tool and/or the blocking decisions on those
behaviors. A robust solution must target a granularity above
individual feature accesses (since decisions made at this level
lack the context to distinguish between benign and malicious
feature use) but below the URL level (since decisions at this
level lack the granularity to distinguish between malicious and
benign code delivered from the same source). An effective
strategy must target harmful behavior independent of how it
was delivered to the page, regardless of what other behavior
was bundled in the same code unit.

In this work, we address the above challenges through the
design and implementation of a system for building signatures
of privacy-and-security harming functionality implemented in
JavaScript. Our system extracts script behaviors that occur in
one JavaScript event loop turn [26], and builds signatures
of these behaviors from scripts known to be abusing user
privacy. We base our ground truth of known-bad behaviors on
scripts blocked by the popular crowdsourced filter lists (i.e.,
EL and EP), and generate signatures to identify patterns in how
currently-blocked scripts interact with the DOM, JavaScript
APIs (e.g., the Date API, cookies, storage APIs, etc), and
initiate network requests. We then use these signatures of
known-bad behaviors to identify the same code being delivered
from other URLs, bundled with other code, or inlined in a site.

We generate per-event-loop-turn signatures of known-bad
scripts by crawling the Alexa 100K with a novel instrumented
version of the Chromium browser. The instrumentation covers
Chromium’s Blink layout engine and its V8 JavaScript engine,
and records script interactions with the web pages into a graph
representation, from which our signatures are then generated.
We use these signatures to both measure how often attackers
evade filter lists, and as the basis for future defenses.

In total we build 1,995,444 high-confidence signatures of
privacy-and-security harming behaviors (defined in Section III)
from 11,212 scripts blocked by EasyList and EasyPrivacy. We
then use our browser instrumentation and collected signatures
to identify 3,589 new scripts containing identically-performing
privacy-and-security harming behavior, served from 1,965 do-
mains and affecting 12.48% of websites. Further, we use these
signatures, along with code analysis techniques from existing
research, to categorize the method trackers use to evade filter
lists. Finally, we use our instrumentation and signatures to
generate new filter list rules for 720 URLs that are moved
instances of known tracking code, which contribute to 65.79%
of all instances of filter list evasion identified by our approach,
and describe how our tooling and findings could be used to
build defenses against the rest of the 34.21% instances of filter
list evasions.

A. Contributions

This work makes the following contributions to improving
the state of web content blocking:

1) The design and implementation of a system for gener-
ating signatures of JavaScript behavior. These signatures
are robust to popular obfuscation and JavaScript bundling

tools and rely on extensive instrumentation of the Blink
and V8 systems.

2) A web-scale measurement of filter list evasion, gener-
ated by measuring how often privacy-sensitive behaviors
of scripts labeled by EasyList and EasyPrivacy are re-
peated by other scripts in the Alexa 100K.

3) A quantified taxonomy of filter list evasion techniques
generated by how often scripts evade filter lists by chang-
ing URLs, inlining, or script bundling.

4) 586 new filter list rules for identifying scripts that
are known to be privacy-or-security related, but evade
existing filter lists by changing URLs.

B. Research Artifacts and Data

As part of this work we also share as much of our re-
search outcomes and implementation as possible. We share
the source of our Blink and V8 instrumentation, along with
build instructions. Further, we share our complete dataset of
applying our JavaScript behavior signature generation pipeline
to the Alexa 100K, including which scripts are encountered,
the execution graphs extracted from each measured page, and
our measurements of which scripts are (or include) evasions
of other scripts.

Finally, we share a set of AdBlock Plus compatible filter list
additions to block cases of websites moving existing scripts to
new URLs (i.e., the subset of the larger problem that can be
defended against by existing tools) [5]. We note many of these
filter list additions have already been accepted by existing filter
list maintainers, and note those cases.

II. PROBLEM AREA

This section describes the evasion techniques that existing
content blocking tools are unable to defend against, and which
the rest of this work aims to measure and address.

A. Current Content Blocking Focuses on URLs

Current content-blocking tools, both in research and pop-
ularly deployed, make access decisions based on URLs. Ad-
Block Plus and uBlock Origin, for example, use crowd-sourced
filter lists (i.e. lists of regex-like patterns) to distinguish trusted
from untrusted URLs.

Other content blockers make decisions based on the domain
of a resource, which can be generalized as broad rules over
URLs. Examples of such tools include Ghostery, Firefox’s
“Tracking Protection”, Safari’s “Intelligent Tracking Protec-
tion” system, and Privacy Badger. Each of these tools build
trust labels over domains, though they differ in both how they
determine those labels (expert-curated lists in the first two
cases, machine-learning-like heuristics in the latter two cases),
and the policies they enforce using those domain labels.

Finally, tools like NoScript block all script by default, which
conceptually is just an extremely general, global trust label
over all scripts. NoScript too allows users to create per-URL
exception rules.

B. URL-Targeting Systems Are Circumventable

Relying on URL-level trust determinations leaves users vul-
nerable to practical, trivial circumventions. These circumven-
tions are common and well understood by the web privacy and
security communities. However, these communities lack both a
way to measure the scale of the problem and deploy practical
counter measures. The rest of this subsection describes the
techniques used to evade current content-blocking tools:

1) Changing the URL of Unwanted Code: The sim-
plest evasion technique is to change the URL of the un-
wanted code, from one identified by URL-based blocking
tools to one not identified by blocking tools. For example,
a site wishing to deploy a popular tracking script (e.g.,
https://tracker.com/analytics.js), but which is blocked by filter
lists, can copy the code to a new URL, and reference the code
there (e.g., https://example.com/abc.js). This will be successful
until the new URL is detected, after which the site can
move the code again at little to no cost. Tools that generate
constantly-changing URLs, or which move tracking scripts
from a third-party to the site’s domain (first party) are a
variation of this evasion technique.

2) Inlining Tracking Code: A second evasion technique is
to inline the blocked code, by inserting the code into the text of
a <script> tag (as opposed to having the tag’s src attribute
point to a URL, i.e., an external script). This process can be
manual or automated on the server-side, to keep inlined code
up to date. This technique is especially difficult for current
tools to defend against, since they lack a URL to key off.1

3) Bundling Tracking Code with Benign Code: Trackers
also evade detection by bundling tracking-related code with
benign code into a single file (i.e., URL), and forcing the
privacy tool to make a single decision over both sets of
functionality. For example, a site which includes tracking
code in their page could combine it with other, user-desirable
code units on their page (e.g., scripts for performing form
validation, creating animations, etc.) and bundle it all together
into a single JavaScript unit (e.g., combined.min.js). URL-
focused tools face the lose-lose decision of restricting the
resource (and breaking the website, from the point of view
of the user) or allowing the resource (and allowing the harm).

Site authors may even evade filter lists unintentionally.
Modern websites use build tools like WebPack2, Browserify3,
or Parcel4 that combine many JavaScript units into a single,
optimized script. (Possibly) without meaning to, these tools
bypass URL-based blocking tools by merging many scripts, of
possibly varying desirability, into a single file. Further, these
build tools generally “minify” JavaScript code, or minimize the
size and number of identifiers in the code, which can further
confuse naive code identification techniques.

1One exception is uBlock Origin, which, when installed in Firefox, uses
non-standard API’s[17] to allow some filtering of inline script contents.
However, because this technique is rare, and also trivially circumvented, we
do not consider it further in this work.

2https://webpack.js.org/
3http://browserify.org/
4https://parceljs.org/

C. Problem - Detection Mismatch

The root cause for why URL-based tools are trivial to
evade is the mismatch between what content blockers want
to block (i.e., the undesirable script behaviours) and how
content blockers make access decisions (i.e., how the code
was delivered to the page). Attackers take advantage of this
mismatch to evade detection; URLs are cheap to change,
script behavior is more difficult to change, and could require
changes to business logic. Put differently, an effective privacy-
preserving tool should yield the same state in the browser after
executing the same code, independent of how the code was
delivered, packaged, or otherwise inserted into the document.

We propose an approach that aligns the content blocking
decisions with the behaviors which are to be blocked. The rest
of this paper presents such a system, one that makes blocking
decisions based on patterns of JavaScript behavior, and not
delivery URLs. Doing so provides both a way to measuring
how often evasions currently occur, and the basis of a system
for providing better, more robust privacy protections.

III. METHODOLOGY

This section presents the design of a system for building
signatures of the privacy-and-security relevant behavior of
JavaScript code, per event loop turn [26], when executed in a
web page. The web has a single-threaded execution model, and
our system considers the sum of behaviors each script engages
in during each event loop turn, from the time the script begins
executing, until the time the script yields control.

In the rest of this section, we start by describing why build-
ing these JavaScript signatures is difficult, and then show how
our system overcomes these difficulties to build high-fidelity,
per event-loop-turn signatures of JavaScript code. Next, we
discuss how we determined the ground truth of privacy-and-
security harming behaviors. Finally, we demonstrate how we
build our collection of signatures of known-harmful JavaScript
behaviors (as determined by our ground truth), and discuss
how we ensured these signatures have high precision (i.e., they
can accurately detect the same privacy-and-security harming
behaviors occurring in different code units).

A. Difficulties in Building JavaScript Signatures

Building accurate signatures of JavaScript behavior is dif-
ficult for many reasons, many unique to the browser environ-
ment. First, fingerprinting JavaScript code on the web requires
instrumenting both the JavaScript runtime and the browser
runtime, to capture the downstream effects of JavaScript
DOM and Web API operations. For example, JavaScript code
can indirectly trigger a network request by setting the src
attribute on an element.5 Properly fingerprinting such
behavior requires capturing both the attribute modification
and the resulting network request, even though the network
request is not directly caused by the script. Other complex
patterns that require instrumenting the relationship between
the JavaScript engine and the rendering layer include the

5Google Analytics, for example, uses this pattern.

https://webpack.js.org/
http://browserify.org/
https://parceljs.org/

unpredictable effects of writing to innerHTML, or writing
text inside a <script> element, among many others.

Second, the web programming model, and the extensive
optimizations applied by JavaScript engines, make attributing
script behaviors to code units difficult. Callback functions,
eval, scripts inlined in HTML attributes and JavaScript
URLs, JavaScript microtasks,6 and in general the async nature
of most Web APIs make attributing JavaScript execution to
its originating code unit extremely difficult, as described by
previous work.7 Correctly associating JavaScript behaviors
to the responsible code unit requires careful and extensive
instrumentation across the web platform.

Third, building signatures of JavaScript code on the web
is difficult because of the high amount of indeterminism on
the platform. While in general JavaScript code runs single
threaded, with only one code unit executing at a time, there is
indeterminism in the ordering of events, like network requests
starting and completing, behaviors in other frames on the
page, and the interactions between CSS and the DOM that
can happen in the middle of a script executing. Building
accurate signatures for JavaScript behavior on the web requires
carefully dealing with such cases, so that generated signatures
include only behaviors and modifications deterministically
caused by the JavaScript code unit.

B. Signature Generation

Our solution for building per-event-loop signatures of
JavaScript behavior on the web consists of four parts: (i) accu-
rately attributing DOM modifications and Web API accesses to
the responsible JavaScript unit (ii) enumerating which events
occur in a deterministic order (and excluding those which vary
between page executions) (iii) extracting both immediate and
downstream per-event-loop-turn activities (iv) post-processing
the extracted signatures to address possible ambiguities.

This subsection proceeds by giving a high-level overview of
each step, enough to evaluate its correctness and boundaries,
but excluding some low-level details we expect not to be useful
for the reader. However, we are releasing all of the code of this
project to allow for reproducibility of our results and further
research [5].

1) JavaScript Behavior Attribution: The first step in our
signature-generation pipeline is to attribute all DOM mod-
ifications, network requests, and Web API accesses to the
responsible actor on the page, usually either the parser or
a JavaScript unit. This task is deceptively difficult, for the
reasons discussed in Section III-A, among others.

To solve this problem, we used and extended PageGraph,8

a system for representing the execution of a page as a directed
graph. PageGraph uses nodes to represent elements in a
website’s environment (e.g., DOM nodes, JavaScript units,
fetched resources, etc.) and edges to describe the interaction
between page elements. For example, an edge from a script

6https://javascript.info/microtask-queue
7Section 2.C. of [19] includes more discussion of the difficulties of

JavaScript attribution
8https://github.com/brave/brave-browser/wiki/PageGraph

Fig. 1. Simplified rendering of execution graph for https://theoatmeal.com.
The highlighted section notes the subgraph attributed to Google Analytics
tracking code.

element to a DOM node might encode the script setting an
attribute on that DOM node, while an edge from a DOM
node to a network resource might encode an image being
fetched because of the src attribute on an node.
Figure 1 provides a simplified example of a graph generated
by PageGraph.

All edges and nodes in the generated graphs are fully
ordered, so that the order that events occurred in can be
replayed after the fact. Edges and nodes are richly annotated
and describe, for example, the type of DOM node being
created (along with parents and siblings it inserted alongside),
the URL being fetched by a network request, or which internal
V8 script id9 a code unit in the graph represents.

We use PageGraph to attribute all page activities to their
responsible party. In the following steps we use this informa-
tion to determine what each script did during each turn of the
event loop.

2) Enumerating Deterministic Script Behaviors: Next, we
selected page events that will happen in a deterministic order,
given a fixed piece of JavaScript code. While events like DOM
modifications and calls to (most) JavaScript APIs will happen
in the same order each time the same script is executed, other
relevant activities (e.g., the initiation of most network requests
and responses, timer events, activities across frames) can hap-
pen in a different order each time the same JavaScript code is
executed. For our signatures to match the same JavaScript code
across executions, we need to exclude these non-deterministic
behaviors from the signatures that we generate.

Table I presents a partial listing of which browser events
occur in a deterministic order (and so are useful inputs to code
signatures) and which occur in a non-deterministic ordering
(and so should not be included in signatures).

3) Extracting Event-Loop Signatures: Next, we use the
PageGraph generated graph representation of page execu-

9https://v8docs.nodesource.com/node-0.8/d0/d35/classv8 1 1 script.html

https://javascript.info/microtask-queue
https://github.com/brave/brave-browser/wiki/PageGraph
https://theoatmeal.com
https://v8docs.nodesource.com/node-0.8/d0/d35/classv8_1_1_script.html

Instrumented Event Privacy? Deterministic?

HTML Nodes

node creation no yes
node insertion no yes
node modification no yes
node deletion no yes
remote frame activities no no

Network Activity

request start yes some1

request complete no some1

request error no some1

API Calls

timer registrations no yes
timer callbacks no no
JavaScript builtins no some2

storage access yes yes3

other Web APIs no4 some
1 Non-async scripts, and sync AJAX, occur in a deterministic order.
2 Most builtins occur in deterministic order (e.g. Date API), though there

are exceptions (e.g. setTimeout callbacks).
3 document.cookie, localStorage, sessionStorage, and
IndexedDB

4 While many Web API can have privacy effects (e.g. WebRTC, browser
fingerprinting, etc.) we do not consider such cases in this work, and focus
only on the subset of privacy-sensitive behaviors relating to storage and
network events.

TABLE I
PARTIAL LISTING OF EVENTS INCLUDED IN OUR SIGNATURES, ALONG

WITH WHETHER WE TREAT THOSE EVENTS AS PRIVACY RELEVANT, AND
WHETHER THEY OCCUR IN A DETERMINISTIC ORDER, GIVEN THE SAME

JAVASCRIPT CODE.

PageGraph
Signature

Fig. 2. PageGraph signature generation. The red node represents a script
unit that executed privacy-related activity and the green nodes are the ones
affected by the script unit during one event loop turn. The extracted signature
is a subgraph of the overall PageGraph.

tion, along with the enumeration of deterministic behaviors,
to determine the behaviors of each JavaScript unit during
each event loop turn (along with deterministically occurring
“downstream” effects in the page). Specifically, to obtain the
signature of JavaScript behaviors that happened during one
event-loop turn, our approach extracts the subgraph depicting
the activities of each JavaScript unit, for each event loop turn,
that occurred during page execution (see Figure 2). However,
for the sake of efficiency, we do not generate signatures of
script activity that do not affect privacy. Put differently, each
signature is a subgraph of the entire PageGraph generated
graph, and encodes at least one privacy-relevant event. Here-
after we refer to the extracted signatures, which depict the per-
event-loop behaviors of JavaScript, as event-loop signatures.

For the purposes of this work, we consider privacy-and-

script

cookie jar Date.now setTimeout Navigator.userAgent HTML Element

Fig. 3. Simplified signature of Google Analytics tracking code. Edges are
ordered by occurrence during execution, and nodes depict Web API and DOM
elements interacted with by Google Analytics.

security related events to consist solely of (i) storage events,10

because of their common use in tracking, and (ii) network
events,11 since identifiers need to be exfiltrated at some point
for tracking to occur. We note that there are other types
of events that could be considered here, such as browser
fingerprinting-related APIs, but reserve those for future work.

As an example, Figure 3 shows a (simplified) subgraph of
the larger graph from Figure 1, depicting what the Google
Analytics script did during a single event loop turn: accessing
cookies several times (storage events), reading the browser
user-agent string, creating and modifying an element
(and thus sending out network requests), etc.

At a high level, to extract event-loop signatures from a
PageGraph generated graph, we determined which JavaScript
operations occurred during the same event-loop turn by look-
ing for edges with sequential ids in the graph, all attached to
or descending from a single script unit. As a page executes,
control switches between different script units (or other actions
on the page); when one script yields its turn on the event
loop, and another script begins executing, the new edges in a
graph will no longer be attached to the first script, but to the
newly executing one. Event-loop turns are therefore encoded
in the graph as subgraphs with sequential edges, all related
to the same script node. We discuss some limitations of this
approach, and why we nevertheless preferred it to possible
alternatives in SectionVI-E.

More formally, we build signatures of privacy-and-security
affecting JavaScript behavior using the following algorithm:12.

(i) Extract all edges in the graph representing a privacy-
effecting JavaScript operation (as noted in Table I).

(ii) Attribute each of these edges to the JavaScript unit
responsible. If no script is responsible (e.g., a network
request was induced by the parser), abort.

10i.e. cookies, localStorage, sessionStorage, IndexedDB
11both direct from script (e.g., AJAX, fetch) and indirect (e.g.,)
12This description omits some implementation specific details and post-

processing techniques that are not fundamental to the approach. They are
fully documented and described in our shared source code [5]

(iii) Extract the maximum subgraph containing the relevant
edge and responsible JavaScript code unit comprising all
sequentially occurring nodes and edges. This is achieved
by looking for edges that neighbor the subgraph, and
which occurred immediately before (or after) the earliest
(or latest) occurring event in the subgraph. If an edge is
found, add it and the attached nodes to the subgraph.

(iv) Repeat step 3 until no more edges can be added to the
subgraph.

Once each subgraph is extracted, a hash representation
is generated by removing any edges that represent non-
deterministically ordered events (again, see Table I), chrono-
logically ordering the remaining edges and nodes, concatenat-
ing each elements’ type (but omitting other attributes), and
hashing the resulting value. This process yields a SHA-256
signature for the deterministic behavior of every event-loop
turn during which a JavaScript unit carried out at least one
privacy-relevant operation.

C. Privacy Behavior Ground Truth

Next, we need a ground truth set of privacy harming
signatures, to build a set of known privacy-harming JavaScript
behaviors. We then use this ground truth set of signatures
to look for instances where the same privacy-harming code
reoccurred in JavaScript code not blocked by current content
blockers, and thus evaded detection.

We used EasyList and EasyPrivacy to build a ground truth
determination of privacy-harming JavaScript behaviors. If a
script was identified by an EasyList or EasyPrivacy filter rule
for blocking, and was not excepted by another rule, then
we considered all the signatures generated from that code as
privacy-harming, and thus should be blocked. This measure
builds on the intuition that filter rules block known bad
behavior, but miss a great deal of additional unwanted behavior
(for the reasons described in Section II). Put differently, this
approach models filter lists as targeting behaviors in code units
(and that they target URLs as an implementation restriction),
and implicitly assumes that filter lists have high precision but
low (or, possibly just lower) recall in identifying privacy-and-
security harming behaviors.

To reduce the number of JavaScript behaviors falsely la-
beled as privacy harming, we removed a small number of
filter list network rules that blocked all script on a known-
malware domain. This type of rule does not target malicious
or unwanted resources, but all the resources (advertising and
tracking related, or otherwise) fetched by the domain. As these
rules end up blocking malicious and benign resources alike,
we excluded them from this work. An example of such a rule
is $script,domain=imx.to, taken from EasyList.

D. Determining Privacy-Harming Signatures

To generate a collection of signatures of privacy-harming
JavaScript behaviors on the web, we combine our algorithm
that extracts event-loop signatures (Section III-B), with the
ground truth of privacy-harming behaviors given by EL/EP
(Section III-C). Specifically, we produce this collection of

signatures by visiting the Alexa top 100K websites and
recording their graph representations (one graph per visited
website), using our PageGraph-enhanced browser. For each
visited website, we gather from its graph representation every
script unit executing on the page, including remote scripts,
inline scripts, script executing as JavaScript URLs, and scripts
defined in HTML attributes. We then extracted signatures of
JavaScript behavior during each event loop turn, and recorded
any scripts that engaged in privacy-relevant behaviors.

Next, we omitted signatures that were too small to be
highly identifying from further consideration. After an iterative
process of sampling and manually evaluating code bodies with
signature matches, we decided to only consider signatures that
consisted of at least 13 JavaScript actions (encoded as 13
edges), and interacting with at least 4 page elements (encoded
as nodes, each representing a DOM element, JavaScript builtin
or privacy-relevant Web API endpoint).

This minimal signature size was determined by starting with
an initial signature size of 5 edges and 4 nodes, and then
doing a manual evaluation of 25 randomly sampled matches
between signatures (i.e., cases where the same signature was
generated by a blocked and not-blocked script). We had our
domain-expert then examine each of the 25 randomly sampled
domains to determine whether the code units actually included
the same code and functionality. If the expert encountered a
false positive (i.e., the same signature was generated by code
that was by best judgement unrelated) the minimum graph
size was increased, and 25 new matches were sampled. This
process of manual evaluation was repeated until the expert did
not find any false positives in the sampled matches, resulting
in a minimum graph size of 13 edges and 4 nodes.

Finally, for scripts that came from a URL, we noted whether
the script was associated with advertising and/or tracking,
as determined by EasyList and EasyPrivacy. We labeled all
signatures generated by known tracking or advertising scripts
as privacy-harming (and so should be blocked by a robust
content blocking tool). We treated signatures from scripts not
identified by EasyList or EasyPrivacy, but which matched a
signature from a script identified EasyList or EasyPrivacy,
as also being privacy-harming, and so evidence of filter list
evasion. The remaining signatures (those from non-blocked
scripts, that did not match a signature from a blocked script)
were treated as benign. The results of this measurement are
described in more detail in Section IV.

IV. RESULTS

In this section we report the details of our web-scale
measurement of filter list evasion, generated by applying the
techniques described in Section III to the Alexa 100K. The
section proceeds by first describing the raw website data
gathered during our crawl, then discusses the number and size
of signatures extracted from the crawl. The section follows
with measurements of how this evasion impacts browsing
(i.e., how often users encounter privacy-and-security harming
behaviors that are evading filter lists) and concludes with
measurements of what web parties engage in filter list evasion.

Measurement Value

Crawl starting date Oct 23, 2019
Crawl ending date Oct 24, 2019
Date of filter lists Nov 2, 2019
Num domains crawled 100,000
Num domains responded 88,035
Num domains recorded 87,941

TABLE II
STATISTICS REGARDING OUR CRAWL OF THE ALEXA 100K, TO BOTH
BUILD SIGNATURES OF KNOWN TRACKING CODE, AND TO USE THOSE

SIGNATURES TO IDENTIFY NEW TRACKING CODE.

A. Initial Web Crawl Data

We began by using our PageGraph-enhanced browser to
crawl the Alexa 100K, which we treated as representative
of the web as a whole. We automated our crawl using a
puppeteer-based tool, along with extensions to PageGraph to
support the DevTools interface 13.

For each website in the Alexa 100K, our automated crawler
visited the domain’s landing page and rested for 60 seconds to
allow for sufficient time for scripts on the page to execute. We
then retrieved the PageGraph generated graph-representation
of each page’s execution, encoded as a GraphML-format XML
file.

Table II presents the results of this crawl. From the Alexa
100K, we got a successful response from the server from
88,035 domains, and were able to generate the graph repre-
sentation for 87,941. We attribute not being able successfully
crawl 11,965 domains to a variety of factors, including bot
detection scripts [18], certain sites being only accessible
from some IPs [36], [6], and regular changes in website
availability among relatively unpopular domains. This number
of unreachable domains is similar to those found by other
automated crawl studies [32], [21]. A further 4,286 domains
could not be measured because they used browser features
that PageGraph currently does not correctly attribute (most
significantly, module scripts).

B. Signature Extraction Results

Next, we run our signature generation algorithm (Sec-
tion III-B) on the graph representation of the 87,941 websites
that we crawled successfully from the Alexa top 100K. In total
this yielded 1,995,444 “raw” event-loop signatures from all the
encountered scripts (of these 1,995,444 generated signatures,
400,166 are unique; the same script can be included in multiple
websites and thus generate the same signatures for those
websites). Overall, the average number of signatures generated
for a website is 22.70, with a standard deviation of 22.92.
The maximum number of signatures generated for a website
is 368, while 6,281 out of the 87,941 crawled websites did not
generate signatures. On the other hand, the average number of
signatures generated from a single script unit is 2.54 (that is,
the average from scripts that did generate signatures), with
a standard deviation of 2.59. In our dataset, the maximum
number of signatures generated from a script is 302.

13https://chromedevtools.github.io/devtools-protocol/

We then filtered the above set of generated raw event-loop
signatures to those matching the following criteria:

1) Contained at least one privacy-or-security relevant event
(defined in Section III-B3)

2) Occurred at least once in a script blocked by EasyList or
EasyPrivacy (i.e., a blocked script)

3) Occurred at least once in a script not blocked by EasyList
and EasyPrivacy (i.e., an evaded script).

4) Have a minimum size of 13 edges and 4 nodes (see
Section III-D)

This filtering resulted in 2,001 unique signatures. We refer
to this set of signatures as ground truth signatures. Our goal
here is to focus only on the signatures of behaviors that are
identified by EasyList and EasyPrivacy as privacy-harming,
but also occur in other scripts not blocked by these filter lists.
Note that this filtering implies that an evaded script is identified
as long as at least one of its event-loop signatures matches
one from the scripts blocked by EasyList and EasyPrivacy
(i.e., we do not need multiple signature matches to confirm
an evaded script). Also, recall from Section III-D that we
impose a lower bound (13 edges and 4 nodes) on the signature
size determined manually by our domain expert in order to
reduce false positives (and hence the fourth requirement in
our filtering criteria above). If we remove the restriction on
the minimum signature size, then the above filtering would
give us a total of 5,473 unique signatures (i.e., 3,472 were
discarded as too small).

Table III summarizes the scripts from which our signature
generation algorithm (Section III-B) produced at least one
signature in our ground truth set, both in total and broken
down according to whether they are blocked by EasyList and
EasyPrivacy. For comparison, we also show the corresponding
statistics for the 3,472 signatures that we discarded as too
small. Not surprisingly, the discarded small signatures were
found in more scripts than our ground truth set. This is because
the specificity of a signature is proportional to the number
of script actions that it registers (e.g., a signature consisting
of only one storage write operation would be found in many
scripts that use the local storage API).

For our purposes we prefer precision over recall, by utilizing
expert domain knowledge to set a reasonable cut-off signature
size. Notice that our approach is optimized towards minimiz-
ing false positives, which means that the behavior of the script
needs to be expressive enough (have enough edges/nodes) to
indicate privacy-harming behavior (see §III-D). Small signa-
tures are less expressive, so they resulted in our experiments in
matching more scripts, which include both true/false positives.

Figure 4 shows the distribution of the number of unique
signatures in our ground truth set that were found in scripts
on each visited domain in our crawl of the Alexa top 100K
(56,390 domains have at least one script where signatures from
our ground truth set were found), as well as the distribution
of the number of unique ground truth signatures in each script
unit where such signatures were found. As we did in Table III,
for comparison here we also plot the same statistics for the
small signatures.

https://chromedevtools.github.io/devtools-protocol/

Scripts Matched by
Ground Truth Signatures

Scripts Matched
by Small Signatures

Scripts generating relevant signatures (unique) 14,801 195,727
Scripts blocked by EL/EP (total) 68,278 145,500
Scripts blocked by EL/EP (unique) 11,212 45,327
External scripts not blocked (total) 11,546 133,153
External scripts not blocked (unique) 3,091 82,483
Inline scripts not blocked 498 67,917
Total unique scripts not blocked (external + inline) 3,589 150,400

TABLE III
THE NUMBER OF SCRIPTS WHOSE BEHAVIORS MATCH SIGNATURES FROM OUR GROUND TRUTH SET, BOTH IN TOTAL AND BROKEN DOWN BY WHETHER

THEY ARE BLOCKED BY EL/EP. FOR COMPARISON WE ALSO SHOW THE SAME STATISTICS FOR THE DISCARDED SMALL SIGNATURES.

10
0

10
1

0

5000

10000

15000

20000

25000

30000

do

m
ai

ns
 m

at
ch

ed

Ground truth signatures matches per domain

10
0

10
1

10
2

0

2000

4000

6000

8000

10000

sc

rip
ts

 m
at

ch
ed

Ground truth signatures matches per script unit

10
0

10
1

matched signatures

0

2000

4000

6000

8000

10000

do

m
ai

ns
 m

at
ch

ed

Small signatures matches per domain

10
0

10
1

10
2

10
3

matched signatures

0

20000

40000

60000

80000

100000

sc

rip
ts

 m
at

ch
ed

Small signatures matches per script unit

Fig. 4. Distribution of the number of signatures per domain and the number
of such signatures in each matched script unit for our ground truth dataset
and for the small signatures dataset.

In total, our ground truth signatures identified 3,091
new unique external script URLs (11,546 instances) hosting
known-harmful behavior, but missed by filter lists, an increase
in 27.57% identified harmful URLs (when measured against
the number of scripts only identified by filter lists and which
contain the ground truth signatures). These evading scripts
were hosted on 2,873 unique domains. In addition to these
evaded external scripts, our signatures also matched inline
scripts. Inline scripts are those whose JavaScript source is
contained entirely within the text content of a script tag,
as opposed to external scripts whose URL is encoded in the
src attribute of a script tag, and thus cannot be blocked by
existing tools. We identified 498 instances of privacy-relevant
behavior from EL/EP blocked scripts moved inline, carried out
on 231 domains.

C. Impact on Browsing

Next, we attempt to quantify the practical impact on privacy
and security from filter list evasion. Here the focus is not on
the number of parties or scripts engaging in filter list evasion,
but on the number of websites users encounter on which filter
list evasion occurs. We determined this by looking for the

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Scripts per Website

0.88

0.90

0.92

0.94

0.96

0.98

1.00

CD
F

of
 W

eb
sit

es

Alexa Top1K
Alexa Top1K-10K
Alexa Top10K-100K

Fig. 5. Total number of evaded scripts per website, for “popular” (Alexa top
1K), “medium” (Alexa top 1K - 10K), and “unpopular” (Alexa top 10K -
100K) websites.

number of sites in the Alexa 100K (in the subset we were able
to record correctly) that included at least one script matching
a signature from a blocked script, but which was not blocked.

We find that 10,973 of the 87,941 domains measured
included at least one known privacy-or-security harming be-
havior that was not blocked because of filter list evasion. Put
differently, 12.48% of websites include at least one instance
of known-harmful functionality evading filter lists.

We further measured whether these evasions occurred more
frequently on popular or unpopular domains. We did so by
breaking up our data set into three groups, and comparing
how often filter list evasion occurred in each set. We divided
our dataset as follows:

1) Popular sites: Alexa rank 1–1k
2) Medium sites: Alexa rank 1,001–10k
3) Unpopular sites: Alexa rank 10,001–100k
Figure 5 summarizes this measurement as a CDF of how

many instances of filter list evasion occur on sites in each
group. As the figure shows, filter list evasion occurred roughly
evenly on sites in each group; we did not observe any strong
relationship between site popularity and how frequently filter
lists were evaded.

D. Popularity of Evading Parties

Finally, we measure the relationship, in regards to domain
popularity (i.e., the delta in their ranking), between the sites

hosting the scripts blocked by EasyList and EasyPrivacy, and
the sites that host scripts with the same privacy-harming
behaviors but evade filter list blocking. Our goal in this
measurement is to understand if harmful scripts are being
moved from popular domains (where they are more likely to
be encountered and identified by contributors to crowdsourced
filter lists) to less popular domains (where the domain can
be rotated frequently). We point out that this measurement
does not have a temporal component, i.e., we make no
distinction with regard to whether the blocked scripts appeared
earlier than the evaded ones, but merely the fact that both
matched they same signature(s) from our ground truth set (see
Section IV-B).

Specifically, we determine these ranking deltas by extract-
ing from our results all the unique pairs of domains that
host scripts matching the same signature of privacy-affecting
behavior. That is, for a given signature in our ground truth
signature set, if there are n unique domains hosting blocked
scripts matching that signature, and m unique domains hosting
evading scripts matching the same signature, then we would
extract n × m domain pairs for that signature. Note that the
final set of domain pairs that we extract across all ground truth
signatures contain only unique pairs (e.g., if the domain pair
(s, t) is extracted for both signature sig1 and sig2, then
it appears only once in the final set of domain pairs).

We arrange the domains in each pair as a tuple
(blocked_domain, evaded_domain) to signify the
fact that the scripts hosted on the evaded_domain con-
tain the same privacy-harming semantics as those on the
blocked_domain, and that the scripts hosted on the
evaded_domain are not blocked by filter lists. In total
we collected 9,957 such domain pairs. For the domains
in each pair, we then look up their Alexa rankings and
calculate their delta as the ranking of blocked_domain
subtracted by evaded_domain (i.e., a negative delta means
evaded_domain is less popular than blocked_domain).
Since we only have the rankings for Alexa top one million
domains, there are 2,898 domain pairs which we do not have
the ranking information for either the blocked_domain or
the evaded_domain (i.e., their popularity ranking is outside
of the top 1M), including 538 pairs where both domains are
outside of the top 1M. We use a ranking of one million
whenever we cannot determine the ranking of a domain.

Figure 6 shows the distribution of all the ranking deltas,
calculated as described above (since we cannot approximate
the relative popularity for the 538 pairs where both domains
are outside of Alexa top 1M, we excluded them from Figure 6).
Note that this distribution is very symmetric: about as many of
the domain pairs have negative delta as those that have positive
delta, and the distribution on both sides of the x-axis closely
mirrors each other. We believe this is mostly due Alexa favor-
ing first-party domains when calculating popularity-metrics;
according to Alexa’s documentation, multiple requests to the
same URL by the same user counts as only one page view
for that URL on that day [7]. Thus, if on a single day the
user visits multiple sites that contain tracking scripts loaded

750 500 250 0 250 500 750
Rank (Thousand)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 D

om
ai

n
Pa

irs

Rank Delta

Fig. 6. Distribution of the delta in Alexa ranking of domains hosting EL/EP
blocked scripts vs. evaded scripts that matched the same signature. A negative
delta means the script is moved from a popular domain to a less popular
domain. The x-axis of domain rank delta is in thousands.

Hosting Domain Requesting Domains Script URLs Matches

google-analytics.com 47,366 44 55,980
googletagmanager.com 6,963 6,158 6,967
googlesyndication.com 5,711 38 5,711
addthis.com 1,600 51 2,464
facebook.net 1,479 1,313 1,479
adobedtm.com 1,076 1,133 2,973
amazon-adsystem.com 915 1 943
adroll.com 814 5 1,931
doubleclick.net 774 5 985
yandex.ru 610 3 684

TABLE IV
MOST POPULAR DOMAINS HOSTING RESOURCES THAT WERE BLOCKED
BY FILTER LISTS. THE FIRST COLUMN RECORDS THE HOSTING DOMAIN,

THE NEXT COLUMN THE NUMBER OF DOMAINS LOADING RESOURCES
FROM THE HOSTING DOMAIN, THE THIRD COLUMN THE NUMBER OF

UNIQUE URLS REQUESTED FROM THE DOMAIN, AND THE FINAL COLUMN
THE COUNT OF (NON-UNIQUE) BLOCKED, HARMFUL SCRIPTS LOADED

FROM THE DOMAIN.

from the same tracker domain, then Alexa counts those as
only one visit to that tracker domain. As a result, domains
that host tracking scripts tend to occupy the middle range of
the Alexa ranking, and their tracking scripts are equally likely
to be hosted on websites both before and after them in the
Alexa rankings (web developers often choose host third-party
tracking scripts on domains that they control, while at the
same time minifying/obfuscating, or otherwise bundling the
scripts, in order to evade filter list blocking, and we provide
a taxonomy of such evasion attempts in Section V).

In addition, we note that there are 140 domain pairs (out
of the 9,957 extracted pairs above) where if a pair (s, t)
is extracted, (t, s) is also extracted. In 72 of these we
have s == t, while the other 68 have s != t. If EL/EP
blocks some, but not all script URLs from a domain, it
could contribute to an extracted domain pair where s ==
t; likewise, if EL/EP misses blocking some scripts on two
distinct domains, then it would lead to both (s, t) and (t,
s) being extracted.

Incidentally, we also measured what domains hosted scripts
most often blocked by filter lists, and which domains hosted

Hosting Domain Requesting Domains Script URLs Matches

google-analytics.com 5,157 4 6,412
addthis.com 1,596 50 2,455
shopify.com 543 4 545
adobedtm.com 398 331 756
tiqcdn.com 311 248 709
googletagservices.com 136 1 143
segment.com 114 107 122
tawk.to 85 85 90
outbrain.com 73 4 78
wistia.com 71 5 85

TABLE V
MOST POPULAR DOMAINS HOSTING SCRIPTS THAT EVADED FILTER LISTS,
BUT MATCHED KNOWN HARMFUL SCRIPTS. THE FIRST COLUMN RECORDS
THE HOSTING DOMAIN, THE SECOND COLUMN THE NUMBER OF DOMAINS

THAT REFERENCED THE HOSTING DOMAIN, THE THIRD COLUMN THE
NUMBER OF UNIQUE, EVADING URLS ON THE HOSTING DOMAIN, AND THE
FINAL COLUMN THE COUNT OF (NON-UNIQUE) NON-BLOCKED, HARMFUL

SCRIPTS LOADED FROM THE DOMAIN.

scripts that contained known-harmful behavior, but evaded
detection. Tables IV and V record the results of these measure-
ments. We find that Google properties are the most frequently
blocked resources on the web (Table IV), both for tracking and
advertising resources, followed by the addthis.com widget
for social sharing (that also conducts tracking operations).

Unsurprisingly then, we also find that these scripts are also
the most common culprits in filter list evasion. Code originally
hosted by Google and AddThis are the most frequently mod-
ified, inlined, moved or bundled to evade filter list detection.

V. EVASION TAXONOMY

Technique # Instances (% Total) Unique Scripts (% Total)

Moving 7,924 (65.79%) 720 (20.06%)
Inlining 498 (4.13%) 498 (2.37%)
Bundling 117 (0.97%) 85 (13.88%)
Common Code 3,505 (29.10%) 2,286 (63.69%)

TABLE VI
TAXONOMY AND QUANTIFICATION OF OBSERVED FILTER LIST EVASION

TECHNIQUES IN THE ALEXA 100K.

This section presents a taxonomy of techniques site authors
use to evade filter lists. Each involves attackers leveraging the
common weakness of current web content blocking tools (i.e.,
targeting well known URLs) to evade defenses and deliver
known privacy-or-security harming behavior to websites.

We observed four ways privacy-and-security harming
JavaScript behaviors evade filter lists: (i) moving code from
a URL associated with tracking, to a new URL, (ii) inlining
code on the page, (iii) combining malicious and benign code
in the same file (iv) the same privacy-affecting library, or code
subset, being used in two different programs.

Each of the following four subsections defines an item
in our taxonomy, gives a representative observed case study
demonstrating the evasion technique, and finally describes the
methodology for programmatically identifying instances of the
evasion technique. Table VI presents the results of applying
our taxonomy to the 3,589 unique scripts (12,044 instances)
that we identified in Section IV-B as evading filter lists.

For each taxonomy label, we perform code analysis and
comparison techniques using Esprima,14 a popular and open-
source JavaScript parsing tool. We use Esprima to generate
ASTs for each JavaScript file to look for structural similari-
ties between code units. By comparing the AST node types
between scripts we are resilient to code modifications that do
not affect the structure of the program, like renaming variables
or adding/changing comments. We consider signatures from
scripts not blocked by EasyList and EasyPrivacy, but matching
a signature generated by a script blocked by EasyList and
EasyPrivacy to determine the relationship of the non-blocked
script to the blocked scripts.

Finally, this taxonomy is not meant to categorize or imply
the goals of the code or site authors, only the mechanisms
that causes the bypassing of URL-based privacy tools. Addi-
tionally, each of the case studies are current as of this writing.
However, we have submitted fixes and new filter lists rules to
the maintainers of EasyList and EasyPrivacy to address these
cases. As a result, sites may have changed their behavior since
this was written.

A. Moving Code

The simplest filter list evasion strategy we observed is
moving tracking code from a URL identified by filter lists to
a URL unknown to filter lists. This may take the form of just
copying the code to a new domain but leaving the path fixed,15

leaving the script contents constant but changing the path,16

or some combination of both. We also include in this category
cases where code was moved to a new URL and minified or
otherwise transformed without modifying the code’s AST.

Site authors may move code from well-known URLs to
unique ones for a variety of reasons. In some cases this may be
unrelated to evading filter lists. Changes to company policies
might require all code to be hosted on the first party, for
security or integrity purposes. Similarly, site authors might
move tracking code from the “common” URL to a new URL
out of some performance benefit (e.g., the new host being one
that might reach a targeted user base more quickly).

Nevertheless, site authors also move code to new URLs
to avoid filter list rules. It is relatively easy for filter list
maintainers to identify tracking code served from a single, well
known URL, and fetched from popular sites. It is much more
difficult for filter list maintainers to block the same tracking
code served from multitudes of different URLs.

1) Classification Methodology: We detect cases of “moving
code” evasion by looking for cases where code with the
identical AST appears at both blocked and not-blocked URLs.
For each script that generated a signature that was not blocked
by EasyList or EasyPrivacy (i.e, an evading script), we first
generated the AST of the script, and then generated a hash
from the ordered node types in the AST. We then compared
this AST hash with the AST hash of each blocked script
that also produced the same signature. For any not-blocked

14https://esprima.org/
15https://tracker.com/track.js → https://example.org/track.js
16https://tracker.com/track.js → https://tracker.com/abdcjd.js

https://esprima.org/
https://tracker.com/track.js
https://example.org/track.js
https://tracker.com/track.js
https://tracker.com/abdcjd.js

script whose AST hash matched one of the blocked scripts,
we labeled that as a case of evasion by “moving code”. We
observed 720 unique script units (7,924 instances) that evade
filter lists using this technique in in the Alexa 100K.

2) Case Study: Google Analytics: Google Analytics
(GA) is a popular tracking (or analytics) script, main-
tained by Google and referenced by an enormous num-
ber of websites. Generally websites get the GA code
by fetching one of a small number of well known
URLs (e.g., https://www.google-analytics.com/analytics.js).
As this code has clear implications for user privacy, the
EasyPrivacy filter list blocks this resource, with the rule
||google-analytics.com/analytics.js.

However, many sites would like to take advantage of
GA’s tracking capabilities, despite users’ efforts to protect
themselves. From our results, we see 125 unique cases (i.e.,
unique URLs serving the evaded GA code) where site authors
copy the GA code from the Google hosted location and move
it to a new, unique URL. We encountered these 125 new,
unique Google-Analytics-serving URLs on 5,283 sites in the
Alexa 100k. Google Analytics alone comprised 17.36% and
66.67% of the unique scripts and instances, respectively, of
all cases in our “moving code” category. Most memorably,
we found the GA library, slightly out of date, being served
from https://messari.io/js/wutangtrack.js, and referenced from
messari.io.

B. Inlining Code

Trackers and site authors also bypass filter lists by “in-
lining” their code. While usually sites reference JavaScript
at a URL (e.g., <script src=...>), HTML also al-
lows sites to include JavaScript as text in the page
(e.g. <script>(code)</script>, which causes to the
browser to execute script without a network request.

A side effect of this “inlining” is that URL-based privacy
tools lack an opportunity to prevent the script’s execution. We
note that there are also additional harms from this practice,
most notably performance (e.g., code delivered inline is gen-
erally not cached, even if its reused on subsequent page views).
Depending on implementation, inlining scripts can also delay
rendering the page, in a way remote async scripts do not.

1) Classification Methodology: Inlining is the most
straightforward evasion type in our taxonomy scheme. Since
PageGraph records the source location of each JavaScript unit
that executes during the loading of a page, we can easily
determine which scripts were delivered as inline code. We
then compare the AST hashes (whose calculation method we
described in Section V-A1) of all inline scripts to all blocked
scripts that generated identical signatures. We labeled all cases
where the hashed-AST of an inline script matched the hashed-
AST of a script blocked by EasyList or EasyPrivacy, and both
scripts generated identical signatures, as cases of evasion by
“inlining”. We observed 498 cases of sites moving blocked,
privacy harming behaviors inline.

2) Case Study: Dynatrace: Dynatrace is a popular
JavaScript analytics library that allows site owners to monitor

how their web application performs, and to learn about their
users behavior and browsing history. It is typically loaded as a
third-party library by websites, and is blocked in EasyPrivacy
by the filter rule ||dynatrace.comˆ$third-party.
Similar, client-specific versions of the library are also made
available for customers to deploy on their domains, which
EasyPrivacy blocks with the rule /ruxitagentjs_.

However, when Dynatrace wants to deploy its monitoring
code on its own site www.dynatrace.com (and presumably
make sure that it is not blocked by filter lists) it inlines the
entire 203k lines JavaScript library into the header of the page,
preventing existing filter lists from blocking its loading.

C. Combining Code

Site authors also evade filter lists by combining benign and
malicious code into a single code unit. This can be done by
trivially concatenating JavaScript files together, or by using
popular build tools that combine, optimize and/or obfuscate
many JavaScript files into a single file.

Combining tracking and user-serving code into a single
JavaScript unit is difficult for existing tools to defend against.
Unlike the previous two cases, these scripts may be easy
for filter list maintainers to discover. However, they present
existing privacy tools with a no-win decision: blocking the
script may prevent the privacy-or-security harm, but break the
page for the user; not blocking the script allows the user to
achieve their goals on the site, though at possible harm to the
Web user.

1) Classification Methodology: We identified cases of eva-
sion by “combing code” by looking for cases where the AST of
a blocked script is a subgraph of an evaded script, where both
scripts generated the same signature. To detect such cases,
we again use Esprima to generate AST for all scripts that
match the same signatures. We then look for cases where the
AST of a blocked script is fully contained in the AST of an
evaded script. More specifically, if an evaded script’s AST
has a subtree that is both (i) structurally identical to the AST
of a blocked script (i.e., subtree isomorphism) (ii) the corre-
sponding AST nodes in both trees have the same node type,
and (iii) both scripts generated the same signature, we then
labeled it as a case of evasion by “code combining”. In total we
observed 85 unique scripts (117 instances) that were privacy-
and-security harming scripts combined with other scripts.

2) Case Study: Insights JavaScript SDK: Insights is a
JavaScript tracking, analytics and telemetry package from
Microsoft,17 that allows application developers to track and
record visitors. It includes functionality identified by EasyPri-
vacy as privacy-harming, and is blocked by the filter rule
||msecnd.net/scripts/a/ai.0.js.

In order to evade EasyPrivacy, some sites copy the Microsoft
Insights code from the Microsoft provided URL, and included
it, among many other libraries, in a single JavaScript file.
This process is sometimes called “bundling” or “packing”.
As one example, the website https://lindex.com includes the

17https://docs.microsoft.com/en-us/azure/azure-monitor/overview

https://www.google-analytics.com/analytics.js
https://messari.io/js/wutangtrack.js
messari.io
www.dynatrace.com
https://lindex.com
https://docs.microsoft.com/en-us/azure/azure-monitor/overview

Insights library, along with the popular Vue.js and Mustache
libraries, in a single URL,18 packaged together using the
popular WebPack19 library.

D. Included Library

Finally, filter lists are unable to protect against JavaScript
code including common privacy-harming libraries. Such li-
braries are rarely, if ever, included by the site directly, but are
instead downstream dependencies by the libraries directly in-
cluded on the website. These cases are common, as JavaScript
build systems emphasize small, reusable libraries. Downstream
libraries are difficult for filter lists to target because there is
no URL filter list maintainers can block; instead, filter list
maintainers can only target the diverse and many bespoke
JavaScript applications that include the libraries.

1) Classification Methodology: We identified 2,286 unique
scripts (3,505 instances) in the Alexa 100K that include
such privacy-and-security threatening code as a dependency.
These were found by looking for common significant subtrees
between ASTs. More specifically, when two scripts generated
the same signature, and the AST of the blocked script and the
AST of a not-blocked script, contained significant identical
subtrees. We point out the possibility for false-positive here,
since two scripts generating the signature might have common
AST subtrees that are unrelated to the privacy-or-security-
affecting behavior being signatured. (e.g., both scripts could
include the jQuery library, but not have that library be the part
of either code unit involved in the signature).

It is difficult to programmatically quantify the frequency of
such false positives due to the complexity of the JavaScript
code involved, which is often obfuscated to deter manual
analysis. Nevertheless, we point out that for scripts in this
category, (i) our signatures offer considerable improvements
over the current state-of-the-art, by allowing automatic flag-
ging of scripts that exhibit the same privacy-harming semantics
as existing blocked scripts, and (ii) we believe these false
positives to be rare, based on a best-effort, expert human
evaluation (we encountered only one such case in a human
evaluation of over 100 randomly sampled examples, performed
during the signature size sampling described in Section III).

2) Case Study: Adobe Visitor API: The “Visitor API”
is a library built by Adobe, that enables the fingerprinting
and re-identification of site visitors. It is never included
directly by sites, but is instead included by many other
tools, many of which also generated and sold by Adobe
(e.g. Adobe Target). Some of these Adobe-generated, Visitor
API-including libraries, are blocked by the EasyPrivacy rule
||adobetm.comˆ$third-party.

Other libraries that include the Adobe Visitor API code
though are missed by filter lists, and thus are undefended
against. For example, the site ferguson.com indirectly loads the
Visitor API code on its site, through the site’s “setup” code.20

18https://lindex.com/web-assets/js/vendors.8035c13832ab6bb90a46.js
19https://webpack.js.org/
20https://nexus.ensighten.com/ferguson/fergprod/Bootstrap.js

There many other similar examples of downstream, privacy-
and-security harming libraries included by diverse JavaScript
applications, following this same pattern.

VI. DISCUSSION

A. Comparison to Hash-Based Detection

Given the complexity of the signature-based approach pre-
sented by this work, we compared the usefulness of signature-
based matching with a much simpler approach of detecting
evasion by comparing code text. More specifically, we mea-
sured how many cases of evasion that we detected by using
signatures would have been missed by only comparing the
text (here, hash) of code units. We find that the majority of
the evasion cases we identify using per-event-loop signatures
would be missed by simple text-comparison approaches.

First, we note the majority of evasions discussed in Sec-
tion V cannot be detected by trivial text-comparison ap-
proaches. For example, a simple technique based on comparing
hashes of the script text against known-bad scripts can only
find cases where the exact same script has been moved
verbatim from one URL to another, or copied verbatim into
a larger code unit; it would fail to find evasion resulting
from even trivial modifications, minification, or processing by
bundling (e.g., WebPack-like) tools.

Second, we find that our signature-based approach is able to
identify a significant number of cases that text-only approaches
would miss. Only 411 of the 720 unique scripts we observed
in the “moving code” category of our taxonomy (Section V-A)
had identical script text (i.e., SHA-256 hash); in the remaining
309 cases the scripts behavior was identical but the script
text was modified (a false negative rate of 42.8% in the
“moving code” category alone). However, the simpler, hash-
based approach identified 7,515 of the 7,924 incidents (i.e., not
unique) of moved scripts. Put differently, a text-comparison
approach would correctly handle most cases of scripts being
moved, but would miss 42.8% unique moved scripts (note that
by its nature, a script that has been moved verbatim to another
URL is a special case of “moving code” in our taxonomy).

Furthermore, evaded scripts in the bundling and common
code categories cannot be straightforwardly detected by com-
paring hashes of the script text, since by definition these scripts
contain new code and thus the hash of the script will be
different. Indeed, it is challenging, if not impossible, to use
text-based detection methods against these evasion techniques.
By comparison, since our approach targets the behavior rather
than the delivery mechanism of the harmful scripts (and
regardless of whether they are obfuscated and/or bundled with
other scripts), it can detect evaded scripts whenever their
privacy-harming functionalities are executed.

B. Countermeasures

This work primarily focuses on the problem of measuring
how often privacy-and-security affecting code evades filter
lists, by building behavioral signatures of known-undesirable
code, and looking for instances where unblocked code per-
forms the same privacy-and-security harming behaviors. In this

ferguson.com
https://lindex.com/web-assets/js/vendors.8035c13832ab6bb90a46.js
https://webpack.js.org/
https://nexus.ensighten.com/ferguson/fergprod/Bootstrap.js

section we discuss how this same methodology can be used to
protect web users from these privacy-and-security threatening
code units.

We consider three exhaustive cases, and possible defenses
against each: blocked code being moved to a new URL,
privacy-and-security affecting event-loop turns that affect stor-
age but not network, and privacy-and-security affecting event-
loop turns that touch network.

1) Moved Code: In cases where attackers evade filter lists
by moving code to a new URL, our approach can be used
to programmatically re-identify those moved code units, and
generate new filter lists rules for the new URLs. Using
this approach, we have generated 586 new filter list URLs,
compatible with existing popular content blocked tools like
AdBlock Plus and uBlock Origin. Further, we have submitted
many of these new filter list rules to the maintainers EasyList
and EasyPrivacy; many have been upstreamed, and many more
are being reviewed by the maintainers.

2) Event-Loop Turns Without Network: Instances of code
being inlined, or privacy-or-security affecting code being com-
bined with other code, are more difficult to defend against,
and require runtime modifications. These have not been im-
plemented as part of this work, but we discuss possible
approaches for doing so here.21 We note that the single-
threaded model of the browser means that signature-matching
state only needs to be maintained per JavaScript content, to
track the behavior of the currently executing script; state does
not need to be maintained per code unit.

In cases where the privacy-harming, event-loop signature
only consists of storage events (i.e. no network behavior),
we propose staging storage for the length of each event-
loop turn, discarding the storage modifications if the event-
loop turn matches a signature, and otherwise committing it.
This would in practice be similar to how Safari’s “intelligent
tracking protection” system stages storage until the browser
can determine if the user is being bounce-tracked.

3) Event-Loop Turns With Network: The most difficult
situation for our signature-based system to defend against is
when the event-loop turn being “signatured” involves network
activity, as this may force a decision before the entire signature
can be matched (i.e. if the network event occurs in the middle
of signature). In such cases, runtime matching would need to
operate, on average, with half as much information, and thus
would not provide protection in 50% of cases. While this is
not ideal, we note that this is a large improvement over current
privacy tools, which provide no protections in these scenarios.
We leave ways of more comprehensively providing runtime
protects against network-involving, security-and-privacy harm-
ing event-loop turns as future work.

C. Accuracy Improvements

This work generates signatures from known privacy-and-
security harming scripts, using as input the behaviors discussed
in Table I. While we have found these signatures to be highly

21These are not abstract suggestions either; we are working with a privacy-
focused browser vendor to implement these proposals.

accurate (based on the methodology discussed in Section IV
and the AST-based matching discussed in Section V), there
are ways the signatures could be further improved. First, the
signatures could be augmented with further instrumentation
points, to further reduce any false positives, and build even
more unique signatures per event-loop turn. Second, we expect
that for many scripts, calling a given function will result in
neither purely deterministic behavior, nor completely unpre-
dictable behavior; that some subsections of code can result
in more than one, but less than infinite, distinct signatures.
Further crawling, therefore, could increase recall by more
comprehensively generating all possible signatures for known
privacy-and-security affecting code.

D. Web Compatibility

Current web-blocking tools suffer significant trade-offs be-
tween coverage and usability. Making decisions at the URL
level, for example, will result in cases of over blocking (and
breaking the benign parts of a website) or under blocking (and
allowing the privacy harming behavior). By moving the unit of
analysis to the event-loop turn, privacy tools could make finer
grained decisions, and do a better job distinguishing between
unwanted and benign code. While we leave an evaluation
of the web-compatibility improvements of our proposed per-
event-loop-turn system to further work, we note it here as a
promising direction for researchers and activists looking to
make practical, usable web privacy tools.

E. Limitations

Finally, we note here limitations of this work, and sugges-
tions for how they could be addressed by future work.

1) Automated Crawling: The most significant limitation is
our reliance on automated-crawls to build signatures. While
such automated crawls are useful for covering a large portion
of the web, they have significant blind spots, including missing
scripts only accessible after authentication on a site, or only
after performing complex interactions on a page. Prior work
has attempted to deal with this though paid research-subject
volunteers [33], or other ways of approximating real world
usage. Such efforts are beyond the scope of this project, but
we note them here for completeness.

2) Evasion: Second, while our behavioral-based signature
approach is far more robust to evasion than existing URL
focused web privacy-and-security tools, there are still cases
where the current approach could be fooled. For example, if
an attacker took a privacy-harming behavior currently carried
out by a single script, and spread the functionality across
multiple colluding code units, our system would not detect
it (though it could with some post-processing of the graph to
merge the behavior of colluding scripts). Similarly, attackers
might introduce intentional non-determinism in their code, by,
for example, shuffling the order of some operations in a way
that does not affect the code’s outcome.

While our system could account for some of these cases
through further crawling (to account for more possible code

paths) or generalizations in signature generation, we note this
attack as a current limitation and area for future work.

We note, however, that our signature-based approach would
be robust to many forms of obfuscation that would confuse
other signature-based approaches. Because our approach relies
on code’s behavior, and not text representation, our approach
is resilient against common obfuscation techniques like code
rewriting, modifying the text’s encoding, and encrypting the
code. We also note that our approach would not be fooled by
obfuscation techniques that only changed control flow without
also changing script behavior; our technique would be robust
against obfuscation techniques that only modify JavaScript
structure.

3) False Positives: Our approach, like all signature-based
approaches, makes trade offs between false-positive and false-
negative rates. Encoding more information in a signature
increases the confidence in cases where the signature matches
observed behavior, but at the risk of missing more similar-
but-not-identical cases. As described in Section III-D, our
system only builds signatures for graphs including at least
13 edges and at least 4 nodes. This minimum graph size was
selected by iteratively increasing the minimum graph size until
we no longer observed any false positives through manual
examination.

However, it is possible that despite the above described
process, our minimum signature size is not sufficient to prevent
some false positives; given the number and diversity of scripts
on the web, it is nearly a certainty that there are instances
of both benign and undesirable code that perform the same
13 behaviors, interacting with 4 similar page structures, even
if we observed no such instances in our manual evaluation.
Deployments of our work that prefer accuracy over recall
could achieve such by increasing the minimum graph size used
in signature generation.

VII. RELATED WORK

A. Blocking trackers

The current line of defense that most users have against
web tracking is via browser extensions [1], [15], [4], [2].
These extensions work by leveraging hand-crafted filter lists of
HTML elements and URLs that are connected with advertisers
and trackers [3]. There are also dynamic approaches for
blocking, like Privacy Badger from EFF [10], which tracks
images, scripts and advertising from third parties in the visited
pages and blocks them if it detects any tracking techniques.
The future of browser extensions as web tracking prevention
tools is currently threaten by the transition to the newest
version of WebExtensions Manifest v3 [8], which limits the
capabilities of dynamically making decisions to block content.

Previous research has also focused on automated approaches
to improve content blocking. Gugelmann et al., built a clas-
sifier for identifying privacy-intrusive Web services in HTTP
traffic [14]. NoMoAds leverages the network interface of a
mobile device to extract features and uses a classifier to detect
ad requests [30].

B. Instrumenting the browser

Extracting information from the browser is mandatory step
into understanding web tracking. Previous approaches, like
OpenWPM, have focused on leveraging a browser extension to
monitor the events of a visited page [11]. In-band approaches
like OpenWPM inject JS into the visited page in order to
capture all events, which can affect their accuracy, as they are
running at the same level as the monitored code. Recently, we
have observed a shift in pushing more browser instrumentation
out-of-band (in-browser) [19], [23], [20]. In this paper, we fol-
low a similar out-of-band approach, where we build signatures
of tracking scripts based on the dynamic code execution by
instrumenting Blink and V8 in the Chromium browser.

C. Code Similarity

Code similarity is a well-established research field in the
software engineering community [29]. From a security per-
spective, finding code similarities with malicious samples has
been explored in the past. Revolver [22] performed large-scale
clustering of JavaScript samples in order to find similarities
in cases where the classification is different, automatically
detecting this way evasive samples.

Ikram et al. [16], suggested the use of features from
JavaScript programs using syntactic and structural models to
build a classifier that detects scripts with tracking [16]. Instead
of relying on syntactic and structural similarity, in our work
we identify tracking scripts based on the tracking properties of
their execution in the browser, defeating this way techniques
like obfuscation [31] and manipulation of ASTs [12].

D. Other Content Blocking Strategies

Another approach to block content is via perceptual detec-
tion of advertisements [34], [27]. This approach is based on
the identifying advertisements based on known visual patterns
that they have, such as the AdChoices standard [9]. Although
this is an exciting new avenue of blocking content on the web,
there is already work that aims to create adversarial attacks
against perceptual ad blocking [35].

VIII. CONCLUSION

The usefulness of content blocking tools to protect Web
security and privacy is well understood and popularly enjoyed.
However, the URL-focus of these tools means that the most
popular and common tools have trivial circumventions, which
are also commonly understood, though frequently ignored for
lack of alternatives.

In this work we make several contributions to begin solving
this problem, by identifying malicious code using highly
granular, event-loop turn level signatures of runtime JavaScript
behavior, using a novel system of browser instrumentation
and graph-based signature generation. We contribute not only
the first Web-scale measurement of how much evasion is
occurring on the Web, but also the ground work for practical
defenses. To further contribute to the goal a privacy-and-
security respecting Web, we also contribute the source code
for our instrumentation and signature generation systems, the

raw data gathered during this work, and filter list rules that
can help users of existing tools defend against a subset of the
problem [5].

IX. ACKNOWLEDGEMENTS

We would like to thank our shepherd Ben Stock, and
our anonymous reviewers for their insightful feedback and
comments. This work was supported by the Office of Naval
Research (ONR) under grant N00014-17-1-2541, by DARPA
under agreement number FA8750-19-C-0003, and by the Na-
tional Science Foundation (NSF) under grant CNS-1703375.

REFERENCES

[1] Adblock Plus. https://adblockplus.org/.
[2] Disconnect. https://disconnect.me/.
[3] EasyList and EasyPrivacy filter lists. https://easylist.to/.
[4] Ghostery. https://www.ghostery.com/.
[5] Semantic signatures. https://github.com/semantic-signatures/

semantic-signatures, 2020.
[6] Sadia Afroz, Michael Carl Tschantz, Shaarif Sajid, Shoaib Asif Qazi,

Mobin Javed, and Vern Paxson. Exploring server-side blocking of
regions. arXiv preprint arXiv:1805.11606, 2018.

[7] Alexa. How are Alexa’s traffic rankings deter-
mined? https://support.alexa.com/hc/en-us/articles/
200449744-How-are-Alexa-s-traffic-rankings-determined-.

[8] Chromium Blog. Trustworthy Chrome Extensions, by default. https://
blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.
html.

[9] Digital Advertising Alliance (DAA). Self Regulatory Principles for
Online Behavioral Advertising. https://digitaladvertisingalliance.org/
sites/aboutads/files/DAA files/seven-principles-07-01-09.pdf, 2009.

[10] EFF. Privacy Badger. https://www.eff.org/privacybadger.
[11] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-

site measurement and analysis. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2016.

[12] Aurore Fass, Michael Backes, and Ben Stock. HideNoSeek: Camou-
flaging Malicious JavaScript in Benign ASTs. 2019.

[13] Kiran Garimella, Orestis Kostakis, and Michael Mathioudakis. Ad-
blocking: A study on performance, privacy and counter-measures. In
Proceedings of the 2017 ACM on Web Science Conference, pages 259–
262. ACM, 2017.

[14] David Gugelmann, Markus Happe, Bernhard Ager, and Vincent Lenders.
An automated approach for complementing ad blockers’ blacklists.
Proceedings of the Symposium on Privacy Enhancing Technologies
(PETS), 2015.

[15] Raymond Hill. uBlock Origin. https://github.com/gorhill/uBlock.
[16] Muhammad Ikram, Hassan Jameel Asghar, Mohamed Ali Kaafar,

Anirban Mahanti, and Balachandar Krishnamurthy. Towards seamless
tracking-free web: Improved detection of trackers via one-class learning.
Proceedings of the Symposium on Privacy Enhancing Technologies
(PETS), 2017.

[17] Mozilla Inc. webrequest.filterresponsedata() - mozilla —
mdn. https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/API/webRequest/filterResponseData.

[21] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Panagiotis Papadopou-
los, Matteo Varvello, Benjamin Livshits, and Alexandros Kapravelos.
The blind men and the internet: Multi-vantage point web measurements.
arXiv preprint arXiv:1905.08767, 2019.

[18] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Co-
manescu, Jean-Michel Picod, and Elie Bursztein. Cloak of visibility:
Detecting when machines browse a different web. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 743–758. IEEE, 2016.

[19] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian,
and Zubair Shafiq. Adgraph: A graph-based approach to ad and tracker
blocking. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2020.

[20] Jordan Jueckstock and Alexandros Kapravelos. VisibleV8: In-browser
Monitoring of JavaScript in the Wild. In Proceedings of the ACM
Internet Measurement Conference (IMC), 2019.

[22] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Chris
Kruegel, and Giovanni Vigna. Revolver: An Automated Approach to
the Detection of Evasive Web-based Malware. In Proceedings of the
USENIX Security Symposium, 2013.

[23] Bo Li, Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci. Jsgraph:
Enabling reconstruction of web attacks via efficient tracking of live in-
browser javascript executions. In Proceedings of the Symposium on
Network and Distributed System Security (NDSS), 2018.

[24] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang.
Knowing your enemy: understanding and detecting malicious web
advertising. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 674–686. ACM, 2012.

[25] Ben Miroglio, David Zeber, Jofish Kaye, and Rebecca Weiss. The effect
of ad blocking on user engagement with the web. In Proceedings of the
2018 World Wide Web Conference, pages 813–821. International World
Wide Web Conferences Steering Committee, 2018.

[26] Mozilla. Event loop. https://developer.mozilla.org/en-US/docs/Web/
JavaScript/EventLoop#Event loop, 2020.

[27] Adblock Plus. Sentinel - the artificial intelligence ad detector. https:
//adblock.ai/.

[28] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. Annoyed users: Ads
and ad-block usage in the wild. In Proceedings of the 2015 Internet
Measurement Conference, pages 93–106. ACM, 2015.

[29] Chanchal Kumar Roy and James R Cordy. A Survey on Software Clone
Detection Research. Queen’s School of Computing, Technical Report,
2007.

[30] Anastasia Shuba, Athina Markopoulou, and Zubair Shafiq. Nomoads:
Effective and efficient cross-app mobile ad-blocking. Proceedings of the
Symposium on Privacy Enhancing Technologies (PETS), 2018.

[31] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. Any-
thing to Hide? Studying Minified and Obfuscated Code in the Web. In
Proceedings of the Web Conference (WWW), 2019.

[32] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. Browser
feature usage on the modern web. In Proceedings of the 2016 Internet
Measurement Conference, pages 97–110. ACM, 2016.

[33] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most websites don’t
need to vibrate: A cost-benefit approach to improving browser security.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 179–194. ACM, 2017.

[34] Grant Storey, Dillon Reisman, Jonathan Mayer, and Arvind Narayanan.
The future of ad blocking: An analytical framework and new techniques.
arXiv preprint arXiv:1705.08568, 2017.

[35] Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan
Boneh. AdVersarial: Defeating Perceptual Ad Blocking. In Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), 2019.

[36] Michael Carl Tschantz, Sadia Afroz, Shaarif Sajid, Shoaib Asif Qazi,
Mobin Javed, and Vern Paxson. A bestiary of blocking: The motivations
and modes behind website unavailability. In 8th USENIX Workshop on
Free and Open Communications on the Internet (FOCI 18), 2018.

https://adblockplus.org/
https://disconnect.me/
https://easylist.to/
https://www.ghostery.com/
https://github.com/semantic-signatures/semantic-signatures
https://github.com/semantic-signatures/semantic-signatures
https://support.alexa.com/hc/en-us/articles/200449744-How-are-Alexa-s-traffic-rankings-determined-
https://support.alexa.com/hc/en-us/articles/200449744-How-are-Alexa-s-traffic-rankings-determined-
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://digitaladvertisingalliance.org/sites/aboutads/ files/DAA_files/seven-principles-07-01-09.pdf
https://digitaladvertisingalliance.org/sites/aboutads/ files/DAA_files/seven-principles-07-01-09.pdf
https://www.eff.org/privacybadger
https://github.com/gorhill/uBlock
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop#Event_loop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop#Event_loop
https://adblock.ai/
https://adblock.ai/

	Introduction
	Contributions
	Research Artifacts and Data

	Problem Area
	Current Content Blocking Focuses on URLs
	URL-Targeting Systems Are Circumventable
	Changing the URL of Unwanted Code
	Inlining Tracking Code
	Bundling Tracking Code with Benign Code

	Problem - Detection Mismatch

	Methodology
	Difficulties in Building JavaScript Signatures
	Signature Generation
	JavaScript Behavior Attribution
	Enumerating Deterministic Script Behaviors
	Extracting Event-Loop Signatures

	Privacy Behavior Ground Truth
	Determining Privacy-Harming Signatures

	Results
	Initial Web Crawl Data
	Signature Extraction Results
	Impact on Browsing
	Popularity of Evading Parties

	Evasion Taxonomy
	Moving Code
	Classification Methodology
	Case Study: Google Analytics

	Inlining Code
	Classification Methodology
	Case Study: Dynatrace

	Combining Code
	Classification Methodology
	Case Study: Insights JavaScript SDK

	Included Library
	Classification Methodology
	Case Study: Adobe Visitor API

	Discussion
	Comparison to Hash-Based Detection
	Countermeasures
	Moved Code
	Event-Loop Turns Without Network
	Event-Loop Turns With Network

	Accuracy Improvements
	Web Compatibility
	Limitations
	Automated Crawling
	Evasion
	False Positives

	Related Work
	Blocking trackers
	Instrumenting the browser
	Code Similarity
	Other Content Blocking Strategies

	Conclusion
	Acknowledgements
	References

