
Measuring UID Smuggling in the Wild
Audrey Randall

aurandal@eng.ucsd.edu
UC San Diego

Peter Snyder
pes@brave.com
Brave Software

Alisha Ukani
aukani@ucsd.edu
UC San Diego

Alex C. Snoeren
snoeren@cs.ucsd.edu

UC San Diego

Geoffrey M. Voelker
voelker@cs.ucsd.edu

UC San Diego

Stefan Savage
savage@cs.ucsd.edu

UC San Diego

Aaron Schulman
schulman@cs.ucsd.edu

UC San Diego

ABSTRACT
This work presents a systematic study of UID smuggling, an emerg-
ing tracking technique that is designed to evade browsers’ privacy
protections. Browsers are increasingly attempting to prevent cross-
site tracking by partitioning the storage where trackers store user
identifiers (UIDs). UID smuggling allows trackers to synchronize
UIDs across sites by inserting UIDs into users’ navigation requests.
Trackers can thus regain the ability to aggregate users’ activities
and behaviors across sites, in defiance of browser protections.

In this work, we introduce CrumbCruncher, a system for mea-
suring UID smuggling in the wild by crawling the Web. Crumb-
Cruncher provides several improvements over prior work on identi-
fying UIDs and measuring tracking via Web crawling, including in
distinguishing UIDs from session IDs, handling dynamic Web con-
tent, and synchronizing multiple crawlers. We use CrumbCruncher
to measure the frequency of UID smuggling on the Web, and find
that UID smuggling is present on more than eight percent of all
navigations that we made. Furthermore, we perform an analysis of
the entities involved in UID smuggling, and discuss their methods
and possible motivations. We discuss how our findings can be used
to protect users from UID smuggling, and release both our complete
dataset and our measurement pipeline to aid in protection efforts.

CCS CONCEPTS
•Networks→Networkmeasurement; • Security and privacy
→ Privacy protections.

ACM Reference Format:
Audrey Randall, Peter Snyder, Alisha Ukani, Alex C. Snoeren, Geoffrey
M. Voelker, Stefan Savage, and Aaron Schulman. 2022. Measuring UID
Smuggling in the Wild. In ACM Internet Measurement Conference (IMC
’22), October 25–27, 2022, Nice, France. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3517745.3561415

1 INTRODUCTION
Over the past few years, tensions have deepened between those
collecting detailed user behavior data for advertising purposes and
privacy-conscious users who do not want to be monitored. While

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IMC ’22, October 25–27, 2022, Nice, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9259-4/22/10.
https://doi.org/10.1145/3517745.3561415

there are some efforts to find a compromise between these po-
sitions (e.g., allowing the collection of aggregated, anonymized
data [5, 17]), none have yet managed to satisfy advertisers or privacy
advocates [8, 37, 49]. In the absence of such a solution, privacy-
focused browsers (i.e., browsers for which privacy is seen as a
competitive advantage) have rolled out changes that block one of
the core mechanisms used by third-party trackers to aggregate in-
formation about a user across different websites, thereby building a
profile of that user.

Previously, third-party trackers could build user profiles across
websites because information stored by the tracker was accessible
to that tracker across all websites that include it. Trackers com-
monly used third-party cookies for this purpose, although any type
of browser storage could be used. Trackers could use this shared
storage to build shared state for each user across every website
that included the tracker. However, several browsers are now em-
ploying an anti-tracking defense called “partitioned storage,” which
removes this sharing ability. By partitioning all browser storage by
the domain of the top-level website, browsers intended to prevent
trackers from linking user information across sites.

However, trackers have responded by implementing a new class
of tracking technique that we call UID smuggling. UID smuggling
allows trackers to share a user’s information across websites by
modifying the user’s navigation requests. The tracker accomplishes
this style of tracking by decorating users’ navigation requests with
identifying information, which will then be shared across first-party
boundaries. The tracker may also choose to momentarily redirect
the user to its own domain, where it can record this smuggled
information as a first party itself. In each case, trackers use UID
smuggling to regain the ability to link user identifiers across sites,
circumventing the browser’s attempt to partition such information.

This work presents the first systematic measurement of UID
smuggling in the wild. We make the following contributions:

(1) We perform the first systematic measurement of UID
smuggling in the wild.

(2) We construct a multi-stage analysis pipeline, nicknamed
CrumbCruncher, to crawl the Web and measure how fre-
quently UID smuggling occurs.

(3) We improve on prior techniques for differentiating user
identifiers from other values and synchronizing multi-
ple crawlers.

(4) We categorize the behaviors of trackers, including which
categories of sites are more likely to include UID smuggling.

(5) We contribute to countermeasures against UID smuggling,
both by sharing our hand-edited dataset, and by publishing
our tool for finding new instances, CrumbCruncher.

https://doi.org/10.1145/3517745.3561415
https://doi.org/10.1145/3517745.3561415

IMC ’22, October 25–27, 2022, Nice, France A. Randall et al.

Figure 1: Flat storage versus partitioned storage.

The remainder of our work is organized as follows. Section 2
covers the background of navigational tracking and related work.
Section 3 describes the design of our crawler, CrumbCruncher, and
its capabilities and limitations. Section 4 discusses ethical ramifica-
tions. Section 5 presents our findings, including the most common
participants in navigational tracking and a summary of their behav-
iors and categories. Section 6 describes the limitations of our work.
Section 7 details our contribution to the countermeasures that var-
ious entities have taken against navigational tracking. Section 8
discusses related work, and Section 9 concludes.

2 BACKGROUND
Advertisers want to track user activity across sites for a variety of
purposes, including performing identity resolution and supporting
affiliate marketing, but such capabilities represent a significant
threat to user privacy.

For over a decade, browsers allowed advertisers to perform cross-
site tracking functions with third-party cookies. But because this
capability presents a threat to privacy, several popular browsers
have implemented partitioned storage to isolate third-party cookies
so they cannot be used for cross-site tracking. At the time of writ-
ing, three browsers — Firefox, Safari, and Brave [19, 25, 50] — all
use partitioned storage by default. Partitioned storage uses a hier-
archical namespace, where the hierarchy is based on the domain of
the frame that contains the cookie-storing element. Figure 1 shows
the difference between flat and partitioned storage from a tracker’s
perspective. When flat storage is in use, the tracker can read from or
write to the same storage area regardless of which website it is on,
but when partitioned storage is implemented, the tracker accesses

a different storage area on each website that loads the tracker. This
prevents trackers from assigning the same user-identifying cookie
(represented by the gingerbread man icon) to users across sites. A
similar system is used for other browser storage locations, such as
local storage.

To circumvent the protections that partitioned storage provides,
advertisers are increasingly using UID smuggling. UID smuggling
modifies a user’s navigation requests by adding information to the
navigation URLs in the form of query parameters. UID smuggling
may also redirect the user to one or more third-party trackers before
redirecting to the intended destination.

Figure 2 shows this process in detail. In UID smuggling, the
user is sent through a navigation path. This path begins at the
originator website, where the user clicks a link (step 1). When
the link is clicked, the page itself or a tracker on the page decorates
the URL by adding the originator’s user identifier (UID) as a query
parameter. The link may be either a first party or a third party link,
because any script on a webpage may modify any link within its
frame. Third party scripts are often loaded within the top level
frame of the page, so they may modify any link within the top level
frame. After the user clicks the link, the navigation path passes
through zero or more redirectors, which are invisible to the user
but are permitted to store first party cookies (step 2). Each of
these redirectors has the ability to store the UID from the query
parameter as a cookie or local storage value under the redirector’s
domain. Finally, the user is sent to the destination, the website
the link originally pointed to (step 3). The destination may also
store the UID under its own domain. If there are no redirectors in
the navigation path, the threat to users is simply that the UID gets
passed between the originator and the destination. This may occur
when the tracker that performs the UID smuggling is confident that
its scripts will be present on both the originator and destination
page, to decorate the link and collect the UID respectively. Thus,
trackers using UID smuggling regain the ability to share UIDs
across websites with different domains, in defiance of the browser’s
partitioned storage protections.

UID smuggling is related to, but more powerful than, two pre-
viously studied tracking techniques: bounce tracking and cookie
syncing. Bounce tracking also modifies a user’s navigation path by
redirecting them through tracking sites that can store first-party
cookies. Bounce tracking allows a tracker to record which origina-
tor and destination websites a user has visited, but not to aggregate
any information about a user’s behavior on those websites (the
links the user clicks, purchases the user makes, etc.). This is the
case because no link decoration is used to insert UIDs into the nav-
igation path: if such link decoration is used, the technique becomes
UID smuggling. A bounce tracker thus cannot link together the
different UIDs it has assigned to a user across different websites.
Both UID smuggling and bounce tracking are part of a class of
tracking techniques known as “navigational tracking.”

Cookie syncing allows multiple third parties on a single first-
party site to share UIDs with each other. However, if partitioned
storage is in place, third parties cannot share information across
first-party websites using cookie syncing. When partitioned storage
is in use, the storage available to trackers on the destination site
is partitioned away from their storage on the originator. Thus, all
trackers on the originator can share their UIDs with each other,

Measuring UID Smuggling in the Wild IMC ’22, October 25–27, 2022, Nice, France

Figure 2: How UID smuggling allows trackers to circumvent partitioned storage.

and all trackers on the destination can do likewise, but trackers on
the originator cannot share UIDs with trackers on the destination.

3 METHODOLOGY
In this section, we describe CrumbCruncher, a web crawling system
based on Puppeteer that measures the prevalence of UID smuggling
in the wild. CrumbCruncher’s goal is to collect as many potential
cases of UID smuggling as possible, and then distinguish the benign
cases from true UID smuggling by determining which smuggled
values are truly UIDs. To collect potential UID smuggling, Crumb-
Cruncher employs multiple synchronized crawlers that simulate
a set of users, with an additional, trailing crawler that simulates
a user returning to each site. CrumbCruncher must then identify
which potential UIDs are truly UIDs by comparing them across
each crawl: values that vary across the set of different users but
remain static for the repeat visitor are likely to be UIDs.

The canonical approach for identifying UIDs in prior work is to
use only two crawlers to compare potential UID values across users.
Unfortunately, these studies have been forced to discard a large
number of potential UIDs from their analyses under two circum-
stances: first, when the potential UID only appeared on one crawler
instead of both, and second, when the potential UID might be a
session ID instead. Because we expect UID smuggling to be rare and
difficult to find in the wild, we require CrumbCruncher to discard
as few UIDs as possible. CrumbCruncher achieves this goal in three
ways. First, it distinguishes UIDs from session IDs more accurately
than prior studies, which allows it to retain UIDs that would have
been discarded by previous common strategies [1, 12, 13, 26]. Sec-
ond, when potential UID smuggling does not appear on all crawlers,
CrumbCruncher applies programmatic and manual heuristics to
identify UIDs, rather than discarding the cases entirely as prior
work does [1, 12, 13, 15, 26]. Finally, CrumbCruncher introduces a
novel method for synchronizing web crawlers that click iframes,
which allows it to collect data from the elements that are most
likely to contain UID smuggling. CrumbCruncher also uses four
synchronized crawlers, rather than two, giving it multiple chances
to observe each potential UID across two crawlers. Each of these

improvements allows CrumbCruncher to collect or retain more
data than previous systems.1

3.1 Crawling the Web
CrumbCruncher collects a sample of websites that contain UID
smuggling by performing ten-step random walks. Each random
walk begins at a “seeder domain” taken from the Tranco list of
the globally most-popular 10,000 domains [27].2 Each of Crumb-
Cruncher’s multiple crawlers follows the same walk.

At each step of a walk, CrumbCruncher records all first-party
cookies, local storage values, and web requests on the originator
page. Next, it chooses either a frame (<iframe>) or anchor (<a>)
element to click on, in an attempt to trigger navigation. Crumb-
Cruncher selects iframes because we expect them to contain adver-
tisements which might use UID smuggling. CrumbCruncher also
follows anchors because many webpages do not contain iframe
elements. Regardless of element type, CrumbCruncher preferen-
tially chooses elements that navigate to a URL with a different
registered domain than the current page. If such an element does
not exist, CrumbCruncher selects one at random. For each click
that triggers a navigation, CrumbCruncher’s browser extension
collects all navigation web requests by implementing a handler for
the chrome.webRequest.onBeforeRequest event. Upon arriving
at the destination page, CrumbCruncher again records all first-party
cookies, local storage values, and web requests for ten seconds.

CrumbCruncher repeats this navigation process, starting at each
new page loaded by the click in the previous step, nine times. It
then selects a new seeder domain to start the next random walk.
CrumbCruncher retains browser state (including cookies and stor-
age values) for the duration of each walk and discards it when
beginning a new walk. CrumbCruncher proceeds in this depth-first
manner to maximize the number of distinct pages visited, rather
thanmaximizing the elements visited per page, to distribute the sites
it performs clicks on as widely as possible. This strategy minimizes
CrumbCruncher’s potential impact on advertisers (see Section 4 for
1For more details on how prior work identified UIDs, please see Section 8.
2We choose 10,000 seeder domains because several prior studies also used that num-
ber [10, 15, 35].

IMC ’22, October 25–27, 2022, Nice, France A. Randall et al.

Figure 3: A single step of the ten-step random walk that CrumbCruncher performs for each seeder domain.

more details). It also allows CrumbCruncher to observe websites
that range in popularity, rather than staying within the ecosystem
of popular websites.

3.2 Detecting potential UID Smuggling
The goal of CrumbCruncher’s is to identify cases where a UID has
been smuggled — i.e., passed across sites in defiance of browser pro-
tections — which requires differentiating UIDs from non-tracking
tokens. We use the term “token” to refer to any potential UID
found inside the value of a name-value pair, whether that pair is
a first-party cookie, a local storage object, or a query parameter.
CrumbCruncher builds on prior work that identifies UIDs by com-
paring the tokens that are passed by two different users access a
particular website [1, 12, 13, 15, 26, 46]. However, instead of using
two crawlers, CrumbCruncher uses four.

Three of the four crawlers— named Safari-1, Safari-2, and Chrome-
3 — each simulate a different user on a Safari or Chrome browser.
These three crawlers, which run in parallel, allow CrumbCruncher
to discard tokens that are the same across users and are thus un-
likely to be UIDs. We explain how CrumbCruncher spoofs browsers
andwhywe simulate both Safari and Chrome in Section 3.4 and how
we impersonate different users in Section 3.5. The fourth crawler,
Safari-1R, simulates the same user as Safari-1. Safari-1R checks
whether the same token is observed when a webpage is accessed
twice by the same user: specifically, Safari-1R repeats each crawl
step immediately after Safari-1 finishes it. Safari-1R allows Crumb-
Cruncher to discard tokens that differ when observed repeatedly
by the same user, and thus are probably session IDs, not UIDs;
Section 3.7 provides more details on this process.

3.3 Synchronizing multiple crawlers
One underlying assumption behind the multi-crawler methodology
is that all browsers are accessing the same version of a particular
webpage: the four crawlers must visit the same URL and click the
same elements on each page. Figure 3 illustrates this process. How-
ever, we find that keeping the crawlers synchronized presents a

significant challenge due to the dynamic nature of the web. De-
termining which elements are the same on different instances of
the same webpage is not straightforward. Even when accessed in
parallel, websites often load dynamic content: elements that appear
on one crawler’s page might not appear on the others’. We also find
that even when elements are the same (e.g., iframes that load the
same content), they might not appear in the same locations or with
the same size. Additionally, CrumbCruncher clicks iframe elements,
which often do not have any attribute that identifies where a user
will navigate when they click the iframe. Determining which iframe
elements are equivalent across different instances of a webpage is
more challenging than comparing anchor elements, which almost
always have an easily comparable <href> attribute.

Tomitigate this issue, CrumbCruncher uses a central controller (a
local HTTP server) to choose the element that Safari-1, Safari-2 and
Chrome-3 click in parallel. Upon loading a page, each crawler sends
a list of all anchor and iframe elements on that page to the central
controller. These lists contain the elements’ properties, location,
bounding boxes, and x-paths. The controller compares the three
lists to find elements that are the same across all three instances
of the page. We consider elements to be the same if any of three
heuristics are met:

(1) They are anchors and their href values are the same (not
including query parameters).

(2) They have the same HTML attribute names (the values may
differ) and similar bounding boxes (the y-coordinate may
differ, to allow for elements that render at different heights
on the page).

(3) They have the same HTML attribute names and x-path.

These heuristics are imperfect: they may incorrectly label ele-
ments as the same when they are not, or incorrectly discard ele-
ments. To mitigate these possibilities, CrumbCruncher compares
the fully qualified domain name (FQDN) of the site each crawler
has landed on at the end of every crawl step. If all three FQDNs
are not the same, CrumbCruncher terminates the walk. We still
include data from this unsynchronized step in our analyses, because
this situation often occurs when CrumbCruncher has clicked on

Measuring UID Smuggling in the Wild IMC ’22, October 25–27, 2022, Nice, France

different advertisements that each exhibit a separate instance of
UID smuggling.

We evaluate the effectiveness of these heuristics and find 7.6%
of all crawl steps fail because CrumbCruncher is unable to find
an element that is the same across all three synchronized crawls:
this type of failure occurs at step 3 in Figure 3. A further 1.8%
of crawl steps fail at step 6 because the clicked elements were
not actually the same, and led to different destination websites.
The only other significant reason why a crawl step might fail is if
CrumbCruncher fails to connect to the website because of a network
error (ECONNREFUSED, ECONNRESET, etc.) at step 1 , which occurred
on 3.3% of the sites it attempted to visit. We expect the probability
of any of these failures occurring to be independent of the step of
the random walk CrumbCruncher was on.

3.4 Impersonating different browsers
All four crawlers use Chrome (version 95 or 92) because our cho-
sen crawling framework, Puppeteer, is designed for that browser.
However, CrumbCruncher impersonates Safari on three of our
four crawlers by spoofing the User-Agent string.3 We chose to
test Safari and Chrome because at the time of writing, Safari im-
plemented partitioned storage by default, while Chrome’s own
defenses against third-party cookies were optional (we enabled
them for our study). Our hypothesis was that trackers might use
UID smuggling more frequently on Safari to evade its ubiquitous
partitioned storage protections. Our Chrome-3 crawler was origi-
nally intended to test this hypothesis, but we were unable to use
it for this purpose: UID smuggling cases quite often appeared on
only one crawler, regardless of whether that crawler was one of
the three Safari crawlers or the Chrome crawler (see Section 3.7).
Differentiating cases where content that performed UID smuggling
was loaded dynamically from cases where UID smuggling occurred
deliberately on Safari and not Chrome proved to be impossible, so
we simply use Chrome-3 as another distinct user to identify UIDs.

We note that while spoofing the User-Agent string does change
the value of window.navigator, which is commonly used as a
proxy for identifying the browser, it is not a foolproof method of
impersonating a browser. Websites may use more sophisticated
methods to identify a browser, such as comparing the codecs it
supports [48]. However, we do not believe this is a significant
problem for our study, because relatively few websites go to such
lengths: Vastel et al. crawled the Alexa top 10,000 websites and
found that only 93 appeared to use sophisticated fingerprinting
techniques to identify the browser that was loading them [48]. We
therefore consider the risk of sites misidentifying our browser to
be small, given how few websites appear to use fingerprinting to
identify browsers.

3.5 Impersonating different users
The Chrome browser differentiates users by storing profiles in a
folder called the “user data directory” [36]. To simulate a new user
at the start of each random walk, each crawler starts with a new
user data directory. This folder is modified from the default in two

3We use the Safari User-Agent string Mozilla/5.0 (Macintosh; Intel Mac OS
X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2
Safari/605.1.15.

ways: first, third-party cookies are disabled, and second, a Chrome
extension is installed that records web requests.

One potential limitation of our user simulation method is that
websites may generate UIDs using fingerprinting, i.e., by examin-
ing factors like User-Agent string, supported fonts, hardware, and
more.4 Many of these inputs are identical across all four crawlers
since they are run on onemachine. If a tracker generated its UIDs us-
ing fingerprinting, assigned the same UID across multiple crawlers,
and then performed UID smuggling, CrumbCruncher would er-
roneously discard those cases. However, we find that this rarely
occurs by performing the following experiment.

We observe that CrumbCruncher will not discard potential in-
stances of UID smuggling that only appear on a single crawler:
only instances that appear on multiple crawlers and have identical
UIDs will be discarded. If CrumbCruncher is erroneously discarding
instances of UID smuggling, we would expect to see very few cases
that both occur on multiple crawlers and originate on sites that
perform fingerprinting.

To test this hypothesis, we separate cases of UID smuggling
into two groups: the cases that originate on sites that are known
to employ fingerprinting, and cases that originate on other sites.
To determine which sites use fingerprinting, we use the list of
fingerprinters found by Iqbal et al. [24]. Only 13% of UID smug-
gling in our data originates on pages hosted by one of Iqbal et
al.’s fingerprinters. We then divide both groups again, into the in-
stances that occur on a single crawler and the instances that occur
on multiple crawlers. Next, we compare the proportion of single-
crawler to multiple-crawler instances in the fingerprinting group
to the non-fingerprinting group. In the fingerprinting group, 44%
of UID smuggling cases occur on multiple crawlers, whereas in the
non-fingerprinting group, 52% of cases occur on multiple crawlers.
While the two-proportion Z test suggests that this difference is sta-
tistically significant — and, therefore, that CrumbCruncher likely
missed some cases of UID smuggling due to fingerprinting — the
difference is small. The relative difference between populations
suggests CrumbCruncher may have missed on the order of 13 cases
of UID smuggling on sites that employ fingerprinting.

3.6 Identifying Potential UID Smuggling
Once CrumbCruncher has finished collecting data, we search for
potential UID tokens that were transferred across first-party con-
texts. We define “different first-party contexts” as the case when
the site the token was originally found on has a different registered
domain than any of the sites that eventually received the token,
whether those sites are redirectors or the ultimate destination.

We extract potential UID tokens from cookies, local storage,
and query parameters by recursively attempting to parse the value
of each name-value pair5 as JSON or URL-encoded values. For
example, if a query parameter contains a JSON string that itself
contains several URL-encoded tokens, we extract each URL-encoded
token individually.

We then discard all of the tokens that were not passed across
at least one first-party context as a query parameter. For example,

4IP address is generally too variable to be used as an input by fingerprinters [11].
5We do not look for tokens in the names of name-value pairs because Fouad et al. found
that storing UIDs as names rather than values was a very uncommon practice [15].

IMC ’22, October 25–27, 2022, Nice, France A. Randall et al.

if the same token was found on both the originator site and the
destination, but was not passed from the originator to the desti-
nation as a query parameter, we discard it. We find that the vast
majority of these particular tokens are not used in UID smuggling,
but rather false positives that happen to appear on both websites,
such as location or language specifiers.

However, we keep tokens that only get passed across part of a
navigation path. For example, if a token appears as a query param-
eter in the URL of a redirector, then gets passed to the destination,
we keep it even if it did not appear on the original URL of that
navigation path. We note that while we cannot tell whether a site
that received a UID did anything harmful with it, the fact that the
site received the UID at all represents a privacy risk. Tokens are
also not required to appear as cookies or local storage values: they
can appear on the originator and destination as query parameters
in third-party web requests.

3.7 Identifying UIDs
After collecting all potential cases of UID smuggling, we identify
and discard all of the cases that transfer harmless values rather than
UIDs. Examples of harmless values include timestamps, language
specifiers, session IDs, and so on. While performing this analysis,
we discovered that cases of potential UID smuggling fell into two
categories: we labeled these categories “static” and “dynamic.” Static
UID smuggling occurs on elements that are always the same on
every visit to the page. Consequently, cases of static UID smuggling
appear on all four crawlers. Dynamic UID smuggling occurs on
elements that load different content on different page visits. Cases
of dynamic UID smuggling appear on fewer than all four crawlers,
despite our efforts to keep the crawlers synchronized. Identify-
ing UIDs in static UID smuggling is simpler than in dynamic UID
smuggling, and we describe our procedure for the static case first.

3.7.1 Identifying UIDs in the static case. To track an individual user,
a UID must be the same across all website visits by the same user
and different across visits to the same website by different users.
Consequently, we discard any token that is the same across our
crawlers that simulate different users, since these cannot be UIDs.
However, it is also necessary to discard tokens that differ across
a single user, since these tokens are likely to be session IDs that
are not used for user tracking. Prior work discarded session IDs
by discarding all tokens whose lifetime was less than a specific
time, such as 90 days [12, 13, 26] or a month [1]. CrumbCruncher
improves on prior work by comparing potential session IDs across
Safari-1 and Safari-1R, which simulate the same user visiting the
same website twice, and discarding the tokens that differ across
these crawlers. A sampling of data collected from one of our crawler
machines indicates that 16% of the UIDs we identify have a lifetime
of less than 90 days, and 9% have a lifetime shorter than a month.
These UIDswould have beenmissed by prior work that uses lifetime
to determine whether a token is a session ID.

3.7.2 Identifying UIDs in the dynamic case. Unfortunately, we found
that the majority of potential UID smuggling instances were dy-
namic and thus did not occur on all four crawlers: in fact, many in-
stances occurred on only a single crawler. For example, we encoun-
tered many cases where each crawler loaded the same originator

User Profiles # Tokens
2 identical plus 1 or more different profiles 325
2 or more different profiles only 171
2 identical profiles only 20
1 profile only 445

Table 1: Crawler combinations where UIDs appeared.

website and clicked the same iframe element, but the iframes con-
tained different advertisements, so each advertisement presented
a different navigation path and arrived at a different destination.
We classify tokens that appear on fewer than four crawlers in the
following manner:

(1) If a token is present in any two crawls with different user
profiles, and its value is the same across those crawls, we
discard it.

(2) If a token’s name is present in Safari-1 and Safari-1R, which
have the same user profile, and its value differs, we discard
the token.

We are left with two classes of tokens: tokens that are present in
only a single crawl, and tokens that only appear in crawls with
different profiles (and have different values across each crawler).
For these tokens, we employ both the programmatic heuristics used
by previous work and manual sorting.

We base our programmatic heuristics on those of prior stud-
ies [12, 13, 26]. We remove tokens that appear to be dates or times-
tamps, tokens that appear to be URLs, and tokens that are less than
eight characters long. We do not impose any restrictions based
on cookie expirations. However, even after we applied these fil-
ters, manual inspection of the remaining tokens revealed a high
number of obvious false positives. These included natural language
strings separated by delimiters (such as “Dental_internal_whitepa-
per_topic,” “share_button”), concatenated words with no delimiter
(“sweetmagnolias,” “trustpilot”), semi-abbreviated words (“navi-
mail”), acronyms (“en-US”), and more. Filtering most of these out
programmatically presented a significant challenge.

We therefore concluded that programmatic heuristics would be
insufficient to distinguish UIDs from other tokens, and resorted to
removing obvious false positives by hand. Our final, conservative
strategy is to remove tokens that are composed of any combina-
tion of natural language words, coordinates, domains, or obvious
acronyms like “en-US.” Table 1 shows how many of the final set of
UIDs were present on various combinations of crawlers.

In the end, we manually removed 577 out of 1,581 tokens because
our programmatic filters failed to recognize them as non-UIDs. This
number is significantly higher than we expected and underscores
the value of attempting to observe UIDs across as many crawlers
as possible.

3.8 Implementation
We implemented CrumbCruncher using both Puppeteer, to auto-
mate site visits and record cookies and local storage, and a custom
Chrome extension, to record web requests. We use Puppeteer in
“headful” mode, using the monitor emulator XVFB [53], to reduce
the chance that CrumbCruncher will be identified as a bot. While

Measuring UID Smuggling in the Wild IMC ’22, October 25–27, 2022, Nice, France

Puppeteer is capable of recording most web requests, it cannot
guarantee that it can attach request handlers before any requests
on a page have been sent [3, 4]. We found during initial testing
that this led to a significant number of missed requests; hence,
CrumbCruncher records requests using a browser extension instead.
CrumbCruncher runs on twelve Amazon EC2 t2.large instances.
Each EC2 instance has a different set of 834 seeder domains. The
full crawl of 10,000 seeder domains takes approximately three days
to complete.

4 ETHICS
CrumbCruncher’s mechanical measurements do not reflect the
interests or intentions of individual consumers. Because Crumb-
Cruncher cannot be influenced to make a purchase after clicking an
ad, there exists a view that our measurements represent potential
economic harms against the profits of the advertising industry and
its clients, and that such economic harms may represent ethical
considerations.

Unfortunately, it is difficult to precisely quantify this potential
economic harm for a variety of reasons. First, different ad place-
ments can have different payment triggers, such as cost-per-mille
(CPM), cost-per-click (CPC), or cost-per-action (CPA). Second, dif-
ferent advertisements are priced differently for each publisher. For
example, CrumbCruncher predominantly engages with display ads,
which are commonly placed via real-time auctions. The prices of
these ads fluctuates continuously based on a variety of factors, in-
cluding conversion rates. Finally, advertising platforms commonly
refund expenditures on ad clicks that they deem to be “bots.” To
establish an upper bound on the economic impact of our study, we
estimate that our study involved fewer than 50,000 ad clicks. If we
assume that all of these ads were placed on a top-tier network (e.g.,
Google Display Ads, with average CPC of $0.67 and average CPM
of $3.12 [45]), and that none of our clicks were identified as bots,
the total cost would be somewhere between $152 (all CPM ads) and
$33,000 (all CPC ads). This expenditure in turn would be spread
across the range of advertising networks and advertisers found in
our random walks (a number that is also hard to estimate, but likely
represents an average cost of a dollar or less for each).

Based on this assessment, we argue that the actual costs borne
by the advertising ecosystem due to our experiments are modest.
However, even if they were not, we would still argue that measure-
ments such as those described in this paper are ethical and should
continue to reflect a norm of research practice (as they have for
over a decade). The digital advertising market today stands at close
to $400B [43] in annual revenue and increasingly profits based on
its ability to target ads based on detailed profiles of each user. The
incentives to provide ever better targeting are enormous and there
is scant evidence that the advertising industry, on its own, is likely
to limit such targeting for the benefit of those users who prefer
to maintain greater privacy. Thus, one of the only mechanisms
for monitoring the evolution in advertising targeting technology —
including techniques such as UID smuggling which are designed to
bypass privacy protections — is to have researchers engage directly
with the advertising ecosystem and measure it. Such efforts are

Unique URL Paths 10,814
Unique URL Paths w/ UID Smuggling 850
Unique Domain Paths w/ UID smuggling 321

Unique Redirectors 214
Dedicated Smugglers 27
Multi-Purpose Smugglers 187

Unique Originators 265
Unique Destinations 224

Table 2: Summary of the navigation paths and their partici-
pants measured by CrumbCruncher.

critical to inform consumers, regulators and those technology de-
velopers providing improved privacy protections. We believe that
such benefits vastly outweigh any modest losses to advertisers.

5 RESULTS
We consider two forms of navigation paths in our evaluation. “URL
paths” consist of the full URLs of the originator, any redirectors,
and the destination (e.g., a.com/x/y?UID=0→ b.com/x/y?UID=0).
Domain paths consist only of the domains at each step of the path
(e.g., a.com→ b.com).

In total, we observed 10,814 unique URL paths in the data set we
gathered using CrumbCruncher. We consider unique URL paths,
rather than total URL paths including duplicate paths, because this
metric gives a better estimate of how many websites participate in
UID smuggling.

Using our method for identifying UIDs, we found UID smuggling
on 8.11% of the unique URL paths taken by CrumbCruncher. It is
interesting that such a non-trivial percentage of advertisers have
implemented UID smuggling, especially given that Chrome — the
most widely used web browser — still permits tracking with third-
party cookies by default.

We speculate that the affiliate advertising market may be driving
the adoption of UID smuggling. An affiliate advertising model is one
where a company that wishes to publish advertisements, such as a
retailer, hires “affiliates” to distribute the advertisements on their
behalf. The retailer runs an “affiliate program” which creates the
advertisements and gives them to affiliates to distribute. The affili-
ates earn a commission on every clicked ad that leads to a purchase,
known as a “conversion” [28]. Affiliate programs have reportedly
been failing to attribute conversions because of browsers’ third
party cookie blocking [18], and link decoration allows conversions
to be attributed correctly.

In the rest of this section we examine the UID smuggling we
discovered in detail to understand who is implementing it, how
they implement it, and why they implement it.

5.1 Redirectors
We start by identifying the trackers involved as redirectors in the
navigation paths that include UID smuggling. Again, a redirector
is an entity that lies in the middle of a navigation path between the
originator and the destination. A smuggler can be any entity along
the path that sends or receives a UID, including a redirector, an
originator, or a destination. We use unique domain paths instead of

IMC ’22, October 25–27, 2022, Nice, France A. Randall et al.

0 2 4 6 8 10 12 14 16 18 20
Number of Appearances

The Irish Times
The Tennessean

Times Internet
USA Today

Upornia
VIVA Networks
VerizonMedia

au Commerce & Life
Dalfak

DesiPorn
Google

J.D. Power
Red Ventures

SMI2
Slickdeals

Yandex
United Internet

Facebook
Sports Reference

Or
ig

in
at

or
 O

rg
an

iza
tio

n

Originators

0 2 4 6 8 10 12 14 16 18 20
Number of Appearances

Discovery, Inc
FriendFinder Networks

Macy's Inc
Pinterest

Red Ventures
Samsung

TRUSTe
Yandex
AdFox

Amazon.com
Apple

DeepSwap AI
Microsoft

Ask Media Group
Hearst Corp.

USA Today
Facebook

Sports Reference
Google

De
st

in
at

io
n

Or
ga

ni
za

tio
n

Destinations

Figure 4: Most common entities involved in UID smuggling as originators or destinations.

URL paths for this analysis, because this metric better captures how
widely a redirector is spread across the web, without over-counting
repeated instances of UID smuggling by the same entity.

We classify redirectors into two groups: “dedicated smugglers”
and “multi-purpose smugglers.” We use a conservative heuristic to
identify dedicated smugglers that appear to have no purpose in the
navigation path besides UID smuggling.6 Dedicated smugglers exist
because they have the right to set first-party cookies, since they
are visited in a first-party context, even when partitioned storage
is in place. They provide an easy way for trackers to aggregate all
the UIDs they collect from different sites into a first-party storage
bucket. We consider a redirector a dedicated smuggler if it meets
three requirements:

• The redirector appears in navigation paths whose originators
have multiple different registered domains,

• The redirector appears in navigation paths that end in desti-
nations with multiple registered domain names,

• The redirector’s FQDN is never observed as an originator or
destination.

If a redirector does not meet this criteria, we classify it as a multi-
purpose smuggler. We separate out dedicated smugglers because
we are confident that these domains have no purpose besides UID
smuggling, and their sole intent is therefore likely to be enabling
trackers to aggregate users’ information across websites. We also
predicted that dedicated smugglers might be particularly underrep-
resented in filter lists that block trackers, because UID smuggling is
such a recent technique. Indeed, when we compared the dedicated
smugglers that we found to the Disconnect list of trackers [23], 41%
of them (11 out of 27) were not yet present in the list.

However, our heuristic is conservative. The less often Crumb-
Cruncher sees a redirector, the less likely it is to observe multiple
originators and destinations for that redirector, in which case the
redirector would not be classified as a dedicated smuggler. Con-
sequently, some dedicated smugglers might appear in the “multi-
purpose smugglers” category.

6For example, site-specific redirection services (e.g., Twitter’s t.co) are not considered
dedicated smugglers using this classification.

Table 3 shows the 30most commonly-occurring redirectors in the
navigation paths we measured. From this list, 16 of the 30 most com-
mon redirectors are dedicated smugglers and 14 are multi-purpose
(the multi-purpose smugglers are marked with an asterisk). Of the
16 dedicated smugglers, 14 are owned by advertisers, while the other
two (btds.zog.link and secure.jbs.elsevierhealth.com) have
unclear owners or purposes. The most commonly used dedicated
smuggler is DoubleClick, which appears in more than 20% of all
cases of UID smuggling.

The multi-purpose trackers appear to fill a variety of roles: while
all of them performUID smuggling, some have a separate purpose as
well. Some redirect to sign-in pages (e.g., signin.lexisnexis.com),
host user-facing websites (e.g., www.facebook.com), redirect to
the English-language version of a site by appending “/en/” (e.g.,
www.getfeedback.com), or upgrade or downgrade HTTP/HTTPS
connections (e.g., kuwosm.world.tmall.com). Somemulti-purpose
smugglers are owned by advertising companies, just as the dedi-
cated smugglers are. Two redirectors, swallowcrockerybless.com
and d.agkn.com, appear to be associatedwith Potentially Unwanted
Programs (PUPs) such as adware.

5.2 Originators and Destinations
Next, we identify the organizations that acted as originators or
destinations during UID smuggling. We began with the Discon-
nect entity list [22], which recorded an owning organization for
45 out of the 436 unique registered domains of the originators and
destinations. We then identified the owners of a further 235 regis-
tered domains manually (all of the domains that appeared multiple
times, plus as many of the long tail as we could). To manually at-
tribute a hostname to an organization, we use a combination of
WHOIS records, copyright ownership information published by
the company, and visiting the hostname in a browser. We found
that WHOIS was not a reliable method for finding this informa-
tion as many websites use WHOIS privacy services, so we relied
more frequently on copyright information and other publicly avail-
able information found via searching the Web. An organization is
counted once per unique domain path: if multiple domains owned

Measuring UID Smuggling in the Wild IMC ’22, October 25–27, 2022, Nice, France

Redirector Count % Domain Paths
adclick.g.doubleclick.net 36 11.2
googleads.g.doubleclick.net 20 6.2
advance.lexis.com* 10 3.1
d.agkn.com 9 2.8
btds.zog.link 9 2.8
ad.doubleclick.net 8 2.5
gm.demdex.net 8 2.5
www.kinopoisk.ru* 7 2.2
secure.jbs.elsevierhealth.com 6 1.9
t.myvisualiq.net 6 1.9
11173410.searchiqnet.com 6 1.9
optout.hearstmags.com* 6 1.9
signin.lexisnexis.com* 6 1.9
trc.taboola.com 5 1.6
l.instagram.com* 5 1.6
ads.adfox.ru* 5 1.6
www.facebook.com* 5 1.6
reseau.umontreal.ca* 5 1.6
l.facebook.com 4 1.2
rtb-use.mfadsrvr.com 4 1.2
www.campaignmonitor.com* 4 1.2
6102.xg4ken.com* 4 1.2
swallowcrockerybless.com* 4 1.2
montreal.imodules.com* 4 1.2
www.getfeedback.com* 4 1.2
kuwosm.world.tmall.com* 4 1.2
www.awin1.com 3 0.9
www.zenaps.com 3 0.9
pr.ybp.yahoo.com 3 0.9
go.dgdp.net 3 0.9
other redirectors 45 14.0

Table 3: The most common redirectors observed in unique
domain paths. Here, “count” refers to the number of unique
navigation paths the domain appeared in. *Multi-purpose
smuggler.

by a single organization appear more than once in a domain path,
the owning organization is only counted once for that path.

Figure 4 shows the originators and destinations observed most
frequently in our measurements. We present the entities as orga-
nizations rather than hostnames because some organizations own
multiple hostnames that appeared in our results. We note that many
originators might be expected to publish affiliate advertisements,
such as sports websites, news organizations, and adult websites,
while many destinations might have affiliate advertising programs,
such as retailers or technology companies. While we cannot guar-
antee that these entities participate in UID smuggling as part of
affiliate advertising campaigns, many of these organizations are the
types of organizations that usually participate in affiliate advertising
programs as affiliates and advertisers.

Figure 4 also illustrates one particular case of UID smuggling
between unexpected organizations. One of the most common cases
of UID smuggling in our measurements was a navigation path

0 10 20 30 40
Number of Registered Domains

Religion & Spirituality
Family & Parenting

Content Server
Food & Drink

Careers
Dating/Personals

Adult Content
Illegal Content

Under Construction
Streaming Media

Science
Travel

Law Government & Politics
Home & Garden

Social Networking
Automotive

Style & Fashion
Health & Fitness

Arts & Entertainment
Personal Finance

Hobbies & Interests
Shopping
Education

Sports
Business

News/Weather/Information
Technology & Computing

W
eb

sit
e

Ca
te

go
ry

Originators
Destinations

Figure 5: Categories of websites that participate in UID
smuggling as originators or destinations.

that led from the originator instagram.com, owned by Facebook,
to the Google Play Store. This path existed because the button
on instagram.com advertising the Instagram mobile app always
appended instagram.com’s UID cookie to the navigation request
for play.google.com. We were surprised to see that two large
advertising companies, that might be expected to be competitors,
were apparently sharing UIDs with each other.

Figure 4 also contains an example of UID smuggling that was
not initiated by an advertiser, but rather used to synchronize infor-
mation between multiple domains owned by a single company. The
most common originator in Figure 4 is Sports Reference, an organi-
zation that maintains several websites with statistics for popular
American sports. This company owns several sports-themed do-
mains whose websites link frequently to each other, such as hockey-
reference.com, stathead.com, baseball-reference.com, and
others [29]. CrumbCruncher spent several random walks in this
ecosystem of websites. We hypothesize that rather than using UID
smuggling for advertising, Sports Reference uses it to share infor-
mation between its own affiliated sites.

5.2.1 Content categories. We further break down the originators
and destinations by categorizing them by the topic of their site
content. We use the categorization defined by the IAB Tech Lab
Content Taxonomy [20] as provided by Webshrinker [52], whose

IMC ’22, October 25–27, 2022, Nice, France A. Randall et al.

0 50 100 150 200 250 300
Number of Requests to Website

6sc.co
hubspot.com

scorecardresearch.com
twitter.com

t.co
bing.com

taboola.com
adroll.com

youtube.com
adsrvr.org

pinterest.com
yotpo.com

moatads.com
linkedin.com

yandex.ru
doubleclick.net

google.com
polarcdn-engine.com

facebook.com
google-analytics.com

Th
ird

 P
ar

ty
 W

eb
sit

es

Figure 6: Most common domains of third party web requests
sent from the destination site.

data set contains 404 domain categories [51]. Out of 339 unique reg-
istered domains, 307 had a useful category and 32 were categorized
as unknown.

Figure 5 shows the most common categories of websites that
participate in UID smuggling in our dataset. The counts of websites
per category reflect the number of unique registered domains in
that category, so that each registered domain is represented only
once even if CrumbCruncher encountered it multiple times. For
example, even though Facebook’s domains are common originators
as seen in Figure 4, they only appear twice as originators in Figure 5:
once for facebook.com and once for instagram.com, both in the
“Social Networking” category.

Notably, “News/Weather/Information” is the most common cate-
gory for originators, and the second most common category overall.
This result is consistent with previous studies that found news web-
sites to have an above-average amount of more traditional tracking
mechanisms, such as fingerprinting and tracking pixels [12, 24].
Our impression, based on manual inspection of a few of these orig-
inators, is that news websites have an above-average number of
advertisements in iframes that perform UID smuggling when they
are clicked.

5.2.2 Third parties. After a UID has been transferred through the
entire navigation path, it may not have finished its journey: third
parties on the destination site may also send the UID back to their
own servers. Figure 6 shows the 20 most common registered do-
mains of the targets of web requests sent from destination sites that
included UIDs.

The third-party trackers listed in this figure include trackers
that did not appear to use UID smuggling. We note that many
requests to third party trackers passed the UID only because the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of redirectors in navigation path

0

50

100

150

200

Nu
m

be
r o

f u
ni

qu
e

na
vi

ga
tio

n
pa

th
s

2+ dedicated smugglers in path
1+ dedicated smugglers in path
No dedicated smuggler in path

Figure 7: Distribution of types of redirectors in URL paths.

0 100 200 300 400
Number of User Identifiers

Redirector to Redirector

Originator to Redirector

Redirector to Destination

Originator to Destination

Originator to Redirector to Destination

Po
rti

on
 o

f N
av

ig
at

io
n

Pa
th

No dedicated smuggler in path
Dedicated smuggler in path

Figure 8: Counts of UIDs that traversed each portion of a
URL path.

request included the entire URL of the destination site, suggesting
that the UID may have been “leaked” to these entities accidentally.
This unintended consequence of UID smuggling may present a
further privacy harm, in that trackers that do not participate in UID
smuggling are nevertheless gaining access to UIDs that they would
otherwise be unable to observe.

5.3 Navigation Paths
In this section, we examine the characteristics of navigation paths
used for UID smuggling, including the features that differentiate
them from benign navigation paths.

Figure 7 shows the number of redirectors in the middle of each
URL path that was used for UID smuggling. The first bar, with zero
redirectors, shows the cases where a UID was transferred directly
from the originator to the destination without passing through any
redirectors in between.

The higher the number of redirectors in a path, the greater the
proportion of those paths that contain dedicated smugglers, and
the greater the number of dedicated smugglers in each path. We

Measuring UID Smuggling in the Wild IMC ’22, October 25–27, 2022, Nice, France

conclude that shorter navigation paths are more likely to have a
benign purpose, whereas longer navigation paths are more likely
to be used for UID smuggling.

Long navigation paths give multiple trackers the ability to share
UIDs with each other. For example, one navigation path started at
a coupon-collecting website (couponfollow.com), passed through
a partner site owned by the same entity, then passed through four
different trackers before arriving at the final destination (a retailer).
Each of these trackers had the ability to record information about
the ad the user had clicked and their apparent interest in the re-
tailer’s products.

Long navigation paths can also allow a single tracker to co-
ordinate multiple domains that it controls. If those domains are
connected to separate infrastructure (as might be the case if one ad-
vertising company acquired another and inherited the acquisition’s
infrastructure), the company might wish to synchronize the UIDs
stored as first party cookies by redirectors. For example, the most
common pair of redirectors we observed (where the first domain in
the pair immediately redirects to the second domain) is awin1.com
→ zenaps.com. Both domains are owned by the advertiser AWIN.

UIDs do not always begin at the originator and pass through
each redirector before arriving at the destination: they may appear
at any step of the path and cease their journey at any number of
hops further along. Each navigation path can also contain multiple
UIDs. Figure 8 shows how many UIDs traverse each portion of
the navigation path. We divide the UIDs that traverse each partial
path into two groups: the UIDs that passed through a dedicated
smuggler, and the UIDs that passed through either multi-purpose
smugglers only or no redirectors at all. For example, the second bar,
“Originator to Destination,” shows the number of UIDs that were
passed through navigation paths with no redirectors.

We observe that the majority of UIDs are transferred across the
entire path from the originator, through any redirectors if they
exist, to the destination. A tracker might wish to do this when it
is reasonably confident that the destination will include one of its
scripts, which is capable of storing the UID under the destination’s
domain. If a tracker is present on the originator and capable of
initiating UID smuggling, but is not confident that the destination
will contain one of its scripts, it might choose to transfer the UID
through only part of the navigation path. These “partial transfer”
cases involve a higher proportion of dedicated smugglers, which
is further confirmation that the redirectors we label “dedicated”
have no other purpose in the navigation path than UID smuggling.
We hypothesize that trackers who only send a UID through a part
of the navigation path might be less widely used, since they are
apparently not confident that the destination will contain one of
their scripts.

6 LIMITATIONS
CrumbCruncher has several limitations. First, we only look for
UIDs that are transferred in the query parameters of URLs, and
not by other methods. For example, trackers reportedly sometimes
decorate the link in the document.referrer header with the UID,
instead of the link to the destination page [54]. Our initial reasoning
was that there are a wide variety of ways to transfer UIDs, so we
could simply check once a crawl was complete for UIDs that had

mysteriously appeared on different websites without being passed
through a URL. In practice, this turned out to be difficult: dynamic
instances of UID smuggling had to be detected using heuristics,
which gave large numbers of false positives when used without
the additional information provided by multiple crawlers. It turned
out that when the same value appeared on two different websites,
the most common reason was that the value was not a UID and
had simply happened to be generated on both sites. To reduce our
false positive rate and therefore the number of identifiers we had
to remove by hand, we chose to consider only values that we had
observed get transferred across at least two first party contexts.

Second, if a website uses browser fingerprinting to generate
UIDs, our methodology may not fool the site into believing that
our crawlers represent different users. As detailed in Section 3.5,
the effect of browser fingerprinting on our results is very small.

Third, if a tracker uses fingerprinting to identify the browser
loading the site, as opposed to the user, it may be able to tell that
CrumbCruncher uses Chrome, not Safari. If a tracker only uses UID
smuggling on Safari, it may choose not to perform it and Crumb-
Cruncher may miss cases. We expect this to be very uncommon
(see Section 3.4).

Fourth, our proposed solution to UID smuggling is to strip out
the query parameters that contain UIDs. This may cause pages to
break, especially in cases where the UID in the URL is used for a
benign purpose, such as in a login page. Some login pages send
UIDs to the server to determine if a user is already signed in. To
test this limitation, we selected ten login pages from our dataset
that CrumbCruncher had classified as performing UID smuggling.
We manually removed the query parameter that contained the UID
from the URL, reloaded the page, and evaluated whether the page
changed or broke. We found that seven of the ten sites showed no
change. One showed minor visual changes: the <body> element of
the pagemoved down by 20 pixels. The final two pages showedmore
significant changes: one failed to auto-fill a field in a form and the
other took the user to a homepage rather than to a specific subpage.
These breakages are a limitation of our proposed mitigation.

Another minor limitation is that the Tranco list of websites
includes non-user-facing websites [38]; however, we note that we
only failed to connect to websites on the Tranco list in 3.3% of cases.
Additionally, our manual heuristic for identifying UIDs may miss
UIDs that are generated by concatenating natural language words;
we expect this case to be so rare as to be almost nonexistent.

7 COUNTERMEASURES
7.1 Existing Mitigations
Defending against UID smuggling is not straightforward. Given the
difficulty of designing defenses that do not degrade user experience,
most defenders (whether browsers or browser extensions) have so
far opted for either heuristic-based or blocklist-based approaches.

Safari. Safari uses heuristics: the browser will delete cookies and
website data set by a redirector unless the user also interacts with
the redirector as a first-party website [21]. Safari labels an originator
as performing UID smuggling if 1) it automatically redirects the user
to another site, and 2) it did not receive a user activation [41, 55].

IMC ’22, October 25–27, 2022, Nice, France A. Randall et al.

Safari also classifies a site as a UID smuggler if it participates in a
navigation path that contains another known UID smuggler.

Firefox. In contrast, Firefox defends against UID smugglers using
the Disconnect Tracker Protection blocklist [23, 30]. Firefox clears
all storage from sites on the Disconnect tracking list after 24 hours,
unless the user has loaded the site as a first party in the previous
45 days [41]. Unfortunately, we found that many UID smugglers
are not yet present on the Disconnect list.

Brave. The Brave browser has multiple approaches for prevent-
ing UID smuggling. First, if the browser is navigating to a link with
a query parameter for another destination URL, Brave will simply
redirect to the URL in the query parameter [40]. If the browser
cannot detect the final destination of the navigation, it allows the
navigation to proceed, but inserts an interstitial that warns users
they will be tracked if they continue. Brave also maintains a list
of UID smuggling URLs created from crowd-sourced and open-
source information, as well as a blocklist of query parameter names
that are commonly used for UID smuggling [42, 44]. Finally, Brave
clears the storage areas associated with any sites it classifies as UID
smugglers as soon as the user closes the tab that loaded them.

Chrome. While Chrome is in the process of deprecating third-
party cookies [39], it does not appear to implement any features to
defend against UID smuggling yet.

Extensions. Some browser extensions have begun to implement
protections against UID smuggling as well. For example, Privacy
Badger [16] — a browser extension by the Electronic Frontier Foun-
dation that blocks cross-site tracking — identifies when a tracker in-
serts a redirector into a navigation path, and extracts the destination
link from the query parameter in the redirector’s URL [7]. Another
extension, uBlockOrigin, implements an interstitial-based approach
similar to Brave’s [31]. Many browser extensions, such as Adblock,
Adblock Plus, and uBlock Origin, use the EasyList and EasyPrivacy
filter lists [14]. We tested the URLs that CrumbCruncher found to
participate in UID smuggling against the EasyList and EasyPrivacy
lists, and unfortunately only 6% of the unique URLs we found would
have been blocked. This result is likely because UID smuggling is
such a new technique that filter lists have not yet caught up and
begun blocking the URLs that participate. Additionally, EasyList
and EasyPrivacy do not yet implement filters for specific query
parameters. Stripping query parameters rather than blocking entire
URLs is likely to result in fewer broken pages and therefore less
inconvenience to users.

7.2 Proposed Mitigations
CrumbCruncher’s data can help augment the blocklists used by
privacy tools and browsers to defend against UID smuggling. We
provide two contributions: first, we publish our list of token names
and trackers. This list contains the query parameter names that
were used to transfer UIDs across websites, as well as the list of
entities that participate in UID smuggling as redirectors. Our sec-
ond contribution is the code for CrumbCruncher itself, which can
be run as an almost entirely automated pipeline to continuously
update blocklists of navigational trackers. A major challenge of
blocklist-based defenses lies in keeping those blocklists up to date:

CrumbCruncher can help perform that task with much less human
intervention than systems that rely on user reports of UID smug-
gling. The code and list of token names and trackers is available at
https://github.com/ucsdsysnet/crumbcruncher. We also ob-
serve that while CrumbCruncher requires far less human effort
than a manually created blocklist would, it still requires some man-
ual intervention. We suggest that an approach based on machine
learning for distinguishing UIDs would be a good avenue of future
work, and would allow CrumbCruncher to perform its tasks in an
entirely automated manner.

8 RELATEDWORK
The work that is most closely related to our own is Koop et al.’s
study of bounce tracking [26]. Bounce tracking is similar to UID
smuggling in that users’ navigation paths are modified to insert
redirectors that can store values as first parties, but differs in that
no UIDs are transferred across contexts. Koop et al. study bounce
tracking only, and do not measure whether UIDs are transferred
across contexts. CrumbCruncher also clicks both iframes and an-
chors, whereas Koop et al.’s crawler clicks only anchors. As a result,
CrumbCruncher can detect UID smuggling used by advertisements
in iframes.

To verify that CrumbCruncher crawled a reasonable sample of
the Web and successfully detected modified navigation paths, we
measured the instances of bounce tracking that CrumbCruncher
observed while it searched for UID smuggling, and compared our
findings to the instances found by Koop et al. We found that bounce
tracking that did not also involve UID smuggling was present on
2.7% of the navigation paths we studied (UID smuggling was present
on 8.1%). Because Koop et al. did not measure whether UIDs were
transferred across contexts, their study labeled all UID smuggling
that involved one or more redirectors as bounce tracking. Koop et
al. found that “11.6% of the websites in the Alexa top 50,000 had at
least one link leading to one of the top 100 redirectors” [26]. This
finding seems consistent with our measurement that either UID
smuggling or bounce tracking is present on a total of 10.8% (8.1%
UID smuggling and 2.7% bounce tracking) of the unique navigation
paths we followed.

8.1 Prior work on differentiating UIDs
Multiple groups have attempted to differentiate between identi-
fiers that are capable of tracking users (UIDs) and identifiers that
are not. To be a UID, a value must differ across different users,
remain the same for the same user (i.e., it must not be a session ID),
and contain sufficient entropy. Techniques for making these three
determinations vary.

Prior work, which focused on cookies that might be UIDs, deter-
mined whether a cookie varied across users by directly or indirectly
simulating different users across different crawls. Some work used
two crawlers that visited the same sites simultaneously [12, 13, 15],
while others simulated multiple users sequentially using a single
crawler [26] or multiple crawlers [46]. Simulating multiple users
sequentially enables a crawler to simulate more different users,
because keeping multiple crawlers synchronized becomes more
difficult as the number of crawlers increases, and a single crawler
can evade this problem entirely. The disadvantage of sequential

Measuring UID Smuggling in the Wild IMC ’22, October 25–27, 2022, Nice, France

user simulation in prior work is that the crawlers did not guarantee
that they visited each website more than once and thus observed
each cookie more than once. Consequently, some of the cookies
measured by the single sequential crawlers could not be compared
across multiple users. In contrast, CrumbCruncher makes a con-
certed effort to visit every website in each crawl with four crawlers
that represent three different users, which increases the chance that
we can compare cookies and local storage values across users.

Determining whether a token is a UID also requires discarding
session IDs. Most past studies labeled cookies as session IDs if their
lifetime was less than a specific time, such as 90 days [12, 13, 26] or a
month [1]. These works also required that the token not vary during
the crawl. In contrast, Fouad et al. did not put a lifetime limit on
cookies, arguing that trackers can easily link short-lived cookies on
their servers [15]. We improve on prior work for discarding session
IDs by immediately repeating every crawl step using a crawler that
mimics one previous user. We only assume a token is a session ID
if it differs across these two crawls. As detailed in Section 3.7.1,
This technique allowed us to include the 16% of UID smuggling
instances that we would have discarded if CrumbCruncher had
used a 90-day minimum lifetime.

A further difference between CrumbCruncher and prior work is
in how we determine if tokens are “the same” across users. Some
previous work used the Ratcliff/Obershelp algorithm [6] to compare
cookie values and allowed those values to differ by 33% [1, 12, 26],
45% [13], or by an unspecified amount [46], while still treating the
cookies as “the same.” We chose to discard tokens as non-UIDs only
when they are entirely identical across different users, because we
wished to be unambiguous about why we had discarded a particular
potential UID. Some previous work also required cookie lengths
to remain the same across crawls [1, 13, 46] or to only differ by
25% [26], as well as requiring cookie lengths to be at least eight
characters. We require token lengths to be greater than or equal
to eight characters, but we do not place any restrictions on the
similarity of token lengths across users.

8.2 Related work on cookie syncing
A related technique to UID smuggling is cookie syncing, which has
been investigated by multiple groups [1, 12, 33, 34, 46, 47]. Cookie
syncing is not the same as UID smuggling, because it does not allow
third parties to share a UID across top level sites when partitioned
storage is in use. Instead, cookie syncing allows third parties on the
same site to share a UID with each other.

8.3 Other related work
Trackers may circumvent partitioned storage protections using
techniques that do not rely on UID smuggling, such as CNAME
cloaking [9, 10] or browser fingerprinting [11, 24, 32].

CNAME cloaking is the procedure of mapping a website subdo-
main to a third party domain using a DNS CNAME record. This
technique allows trackers to share their first party cookies, because
the browser is tricked into attaching cookies from the original web-
site’s subdomain rather than the third party domain the subdomain
redirects to [10]. Trackers can access session cookies, even those
belonging to financial institutions, using this technique [2, 35].

Browser fingerprinting is another technique used by trackers
to circumvent partitioned storage and track users across websites.
Browser fingerprinting allows a tracker to use features of a user’s
browser such as window size, installed fonts, supported codecs, and
more to create a unique “fingerprint” of that user that can function
as (or generate) a UID [11]. A 2013 study crawled 20 pages for each
of the Alexa top 10,000 sites and found that 40 performed browser
fingerprinting [32]. A more recent study improved detection of
fingerprinting code by using machine learning [24]. They then
measured the Alexa top 100,000 sites and found that 10 percent
of them perform fingerprinting. They find fingerprinting is more
common with popular sites, as almost 25% of the Alexa top 10,000
sites perform fingerprinting.

9 CONCLUSION
In this work, we present the first systematic study of UID smug-
gling, a technique that allows trackers to evade browsers’ protec-
tions against cross-website tracking. We find that UID smuggling
is present across 8.1% of the navigations paths we observed. We
publish a list of the entities that participate in UID smuggling, and
classify these entities according to their behavior and purposes. Our
findings can be used by browsers to improve protections against
UID smuggling.

Understanding the scope of UID smuggling, and the techniques
by which it is conducted, is important to continue improving pri-
vacy on the Web. Browsers are increasingly (though not yet uni-
versally) trying to protect their users from being tracked. Under-
standing how trackers are circumventing new browser privacy
protections is important, to make sure privacy improvements are
not lost as quickly as they are gained.

ACKNOWLEDGMENTS
The authors would like to thank Umar Iqbal for shepherding this
work and the anonymous reviewers for their excellent advice and
feedback. Funding for this work was provided in part by National
Science Foundation grant CNS-1705050, the Irwin Mark and Joan
Klein Jacobs Chair in Information and Computer Science, and oper-
ational support from the UCSD Center for Networked Systems.

REFERENCES
[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. The Web Never Forgets: Persistent Track-
ing Mechanisms in the Wild. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS). 674–689.

[2] Assel Aliyeva and Manuel Egele. 2021. Oversharing Is Not Caring: How CNAME
Cloaking Can Expose Your Session Cookies. In Proceedings of the ACM Asia
Conference on Computer and Communications Security (ASIA CCS). 123–134.

[3] aslushnikov. 2018. Intercept target creation: Issue #3667. https://github.com/p
uppeteer/puppeteer/issues/3667

[4] berstend. 2018. Target creation event listeners are sometimes not executed early
enough: Issue #2669. https://github.com/puppeteer/puppeteer/issues/2669

[5] Chetna Bindra. 2021. Building a privacy-first future for web advertising. https:
//blog.google/products/ads-commerce/2021-01-privacy-sandbox/

[6] Paul E. Black. 2021. Ratcliff/Obershelp pattern recognition. https://www.nist.g
ov/dads/HTML/ratcliffObershelp.html

[7] Bennett Cyphers. 2018. Privacy Badger Rolls Out New Ways to Fight Facebook
Tracking. https://www.eff.org/deeplinks/2018/05/privacy-badger-rolls-out-
new-ways-fight-facebook-tracking

[8] Bennett Cyphers. 2021. Google’s FLoC Is a Terrible Idea. https://www.eff.org/
deeplinks/2021/03/googles-floc-terrible-idea

https://github.com/puppeteer/puppeteer/issues/3667
https://github.com/puppeteer/puppeteer/issues/3667
https://github.com/puppeteer/puppeteer/issues/2669
https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://www.nist.gov/dads/HTML/ratcliffObershelp.html
https://www.nist.gov/dads/HTML/ratcliffObershelp.html
https://www.eff.org/deeplinks/2018/05/privacy-badger-rolls-out-new-ways-fight-facebook-tracking
https://www.eff.org/deeplinks/2018/05/privacy-badger-rolls-out-new-ways-fight-facebook-tracking
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea

IMC ’22, October 25–27, 2022, Nice, France A. Randall et al.

[9] Ha Dao, Johan Mazel, and Kensuke Fukuda. 2020. Characterizing CNAME
cloaking-based tracking on the web. In Proceedings of the IFIP/IEEE Traffic Mea-
surement Analysis Conference (TMA).

[10] Yana Dimova, Gunes Acar, Lukasz Olejnik,Wouter Joosen, and TomVanGoethem.
2021. The CNAME of the Game: Large-scale Analysis of DNS-based Tracking
Evasion. In Proceedings of the Privacy Enhancing Technologies Symposium (PETS).
394–412.

[11] Peter Eckersley. 2010. How Unique is Your Web Browser?. In Proceedings of the
Privacy Enhancing Technologies Symposium (PETS). 1–18.

[12] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-
site Measurement and Analysis. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS). 1388–1401.

[13] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,
Jonathan Mayer, Arvind Narayanan, and Edward W Felten. 2015. Cookies That
Give You Away: The Surveillance Implications of Web Tracking. In Proceedings
of the International Conference on World Wide Web (WWW). 289–299.

[14] Fanboy, MonztA, Famlam, and Khrin. 2022. EasyList - Overview. https:
//easylist.to/

[15] Imane Fouad, Nataliia Bielova, Arnaud Legout, and Natasa Sarafijanovic-Djukic.
2020. Missed by Filter Lists: Detecting Unknown Third-Party Trackers with
Invisible Pixels. In Proceedings of the Privacy Enhancing Technologies Symposium
(PETS). 499–518.

[16] Electronic Frontier Foundation. 2022. Privacy Badger. https://privacybadger.org/
[17] Vinay Goel. 2022. Get to know the new Topics API for Privacy Sandbox. https:

//blog.google/products/chrome/get-know-new-topics-api-privacy-sandbox/
[18] Peter Hamilton. 2012. Server-to-Server Tracking Basics (Web-Based Affiliate

Marketing). https://www.tune.com/blog/server-side-tracking-basics/
[19] Tim Huang, Johann Hofmann, and Arthur Edelstein. 2022. Firefox 86 Introduces

Total Cookie Protection. https://blog.mozilla.org/security/2021/02/23/total-
cookie-protection

[20] IAB. 2022. IAB Tech Lab Content Taxonomy. https://www.iab.com/guidelines/i
ab-tech-lab-content-taxonomy/

[21] Apple Inc. 2022. Prevent cross-site tracking in Safari on Mac. https://support.ap
ple.com/guide/safari/prevent-cross-site-tracking-sfri40732/mac

[22] Disconnect Inc. 2022. Entity List. https://github.com/mozilla-services/shavar-
prod-lists/blob/master/disconnect-entitylist.json

[23] Disconnect Inc. 2022. Tracker Protection Lists. https://github.com/disconnectm
e/disconnect-tracking-protection

[24] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the Fin-
gerprinters: Learning to Detect Browser Fingerprinting Behaviors. In Proceedings
of the IEEE Symposium on Security and Privacy (S&P). 1143–1161.

[25] Brian Johnson, Ivan Efremov, and Peter Snyder. 2021. Ephemeral Third-party
Site Storage. https://brave.com/privacy-updates/7-ephemeral-storage/

[26] Martin Koop, Erik Tews, and Stefan Katzenbeisser. 2020. In-Depth Evaluation
of Redirect Tracking and Link Usage.. In Proceedings of the Privacy Enhancing
Technologies Symposium (PETS). 394–413.

[27] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, andWouter Joosen. 2021. A research-oriented top sites ranking hardened
against manipulation - Tranco. https://tranco-list.eu/

[28] Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright, Mark
Felegyhazi, Chris Grier, Tristan Halvorson, Chris Kanich, Christian Kreibich,
He Liu, Damon McCoy, Nicholas Weaver, Vern Paxson, Geoffrey M. Voelker,
and Stefan Savage. 2011. Click Trajectories: End-to-End Analysis of the Spam
Value Chain. In Proceedings of the IEEE Symposium on Security and Privacy (S&P).
431–446.

[29] Sports Reference LLC. 2022. Sports Reference | Sports Stats, fast, easy, and
up-to-date. https://www.sports-reference.com/

[30] Mozilla. 2022. Enhanced Tracking Protection in Firefox for desktop. https:
//support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop

[31] Jared Newman. 2021. The incredibly sneaky way websites sidestep privacy tools
to spy on you. https://www.fastcompany.com/90663878/bounce-tracking-
privacy-browsers-brave-firefox-safari-edge

[32] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. 2013. Cookieless Monster: Exploring the
Ecosystem of Web-Based Device Fingerprinting. In Proceedings of the IEEE Sym-
posium on Security and Privacy (S&P). 541–555.

[33] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos Markatos. 2019.
Cookie Synchronization: Everything You Always Wanted to Know But Were
Afraid to Ask. In Proceedings of the World Wide Web Conference (WWW). 1432–
1442.

[34] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P. Markatos. 2018.
Exclusive: How the (synced) CookieMonster breachedmy encrypted VPN session.
In Proceedings of the European Workshop on Systems Security (EuroSec). 1–6.

[35] Tongwei Ren, Alexander Wittman, Lorenzo De Carli, and Drew Davidson. 2021.
An Analysis of First-Party Cookie Exfiltration due to CNAME Redirections. In
Proceedings of the Workshop on Measurements, Attacks, and Defenses for the Web
(MADWeb).

[36] Chromium Git repository. 2022. User Data Directory. https://chromium.googles
ource.com/chromium/src.git/+/HEAD/docs/user_data_dir.md

[37] Sam Schechner, Patience Haggin, and Tripp Mickle. 2022. Google Overhauls
Cookie Replacement Plan After Privacy Critiques - WSJ. https://www.wsj.com/
articles/google-overhauls-cookie-replacement-plan-after-privacy-critiques-
11643115603

[38] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmer-
mann, Stephen D Strowes, and Narseo Vallina-Rodriguez. 2018. A Long Way to
the Top: Significance, Structure, and Stability of Internet Top Lists. In Proceedings
of the ACM Internet Measurement Conference (IMC). 478–493.

[39] Justin Schuh. 2020. Building a more private web: A path towards making third
party cookies obsolete. https://blog.chromium.org/2020/01/building-more-
private-web-path-towards.html

[40] Peter Snyder. 2021. Debouncing. https://brave.com/privacy-updates/11-
debouncing/

[41] Peter Snyder and Jeffrey Yasskin. 2022. Navigational-Tracking Mitigations. https:
//privacycg.github.io/nav-tracking-mitigations/

[42] Brave Software. 2022. adblock-lists/brave-lists/debounce.json. https://github.com
/brave/adblock-lists/blob/1453e599881854f970ab9164a104104ea9ec139f/brave-
lists/debounce.json

[43] Statista. 2022. Digital advertising spending worldwide from 2021 to 2026. https:
//www.statista.com/statistics/237974/online-advertising-spending-worldwide/

[44] Brave Privacy Team. 2022. "Unlinkable Bouncing" for More Protection Against
Bounce Tracking. https://brave.com/privacy-updates/16-unlinkable-bouncing/

[45] Top Draw Team. 2021. Online Advertising Costs In 2021 | Top Draw. https:
//www.topdraw.com/insights/is-online-advertising-expensive/

[46] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert
Pohlmann. 2018. The Unwanted Sharing Economy: An Analysis of Cookie
Syncing and User Transparency under GDPR. arXiv preprint arXiv:1811.08660.

[47] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert
Pohlmann. 2020. Measuring the Impact of the GDPR on Data Sharing in Ad
Networks. In Proceedings of the ACM Asia Conference on Computer and Commu-
nications Security (ASIA CCS). 222–235.

[48] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. 2020. FP-
Crawlers: Studying the Resilience of Browser Fingerprinting to Block Crawlers.
In Proceedings of the Workshop on Measurements, Attacks, and Defenses for the
Web (MADWeb). San Diego, CA.

[49] Jane Wakefield. 2022. Google slammed over ad-cookie replacement flip-flop. BBC
News (26 Jan. 2022). https://www.bbc.com/news/technology-60138876

[50] WebKit. 2019. Tracking Prevention Policy. https://webkit.org/tracking-
prevention-policy/

[51] Webshrinker. 2022. IAB Categories. https://docs.webshrinker.com/v3/iab-
website-categories.html#iab-categories

[52] Webshrinker. 2022. Webshrinker Website. https://www.webshrinker.com/
[53] David P. Wiggins. 2022. Xvfb—virtual framebuffer X server for X Version 11.

https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
[54] John Wilander. 2019. Intelligent Tracking Prevention 2.3. https://webkit.org/blo

g/9521/intelligent-tracking-prevention-2-3/
[55] JohnWilander. 2020. Bounce Tracking Protection · Issue #6 · privacycg/proposals.

https://github.com/privacycg/proposals/issues/6

https://easylist.to/
https://easylist.to/
https://privacybadger.org/
https://blog.google/products/chrome/get-know-new-topics-api-privacy-sandbox/
https://blog.google/products/chrome/get-know-new-topics-api-privacy-sandbox/
https://www.tune.com/blog/server-side-tracking-basics/
https://blog.mozilla.org/security/2021/02/23/total-cookie-protection
https://blog.mozilla.org/security/2021/02/23/total-cookie-protection
https://www.iab.com/guidelines/ iab-tech-lab-content-taxonomy/
https://www.iab.com/guidelines/ iab-tech-lab-content-taxonomy/
https://support.apple.com/guide/safari/prevent-cross-site-tracking-sfri40732/mac
https://support.apple.com/guide/safari/prevent-cross-site-tracking-sfri40732/mac
https://github.com/mozilla-services/shavar-prod-lists/blob/master/disconnect-entitylist.json
https://github.com/mozilla-services/shavar-prod-lists/blob/master/disconnect-entitylist.json
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/disconnectme/disconnect-tracking-protection
https://brave.com/privacy-updates/7-ephemeral-storage/
https://tranco-list.eu/
https://www.sports-reference.com/
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://www.fastcompany.com/90663878/bounce-tracking-privacy-browsers-brave-firefox-safari-edge
https://www.fastcompany.com/90663878/bounce-tracking-privacy-browsers-brave-firefox-safari-edge
https://chromium.googlesource.com/chromium/src.git/+/HEAD/docs/user_data_dir.md
https://chromium.googlesource.com/chromium/src.git/+/HEAD/docs/user_data_dir.md
https://www.wsj.com/articles/google-overhauls-cookie-replacement-plan-after-privacy-critiques-11643115603
https://www.wsj.com/articles/google-overhauls-cookie-replacement-plan-after-privacy-critiques-11643115603
https://www.wsj.com/articles/google-overhauls-cookie-replacement-plan-after-privacy-critiques-11643115603
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://brave.com/privacy-updates/11-debouncing/
https://brave.com/privacy-updates/11-debouncing/
https://privacycg.github.io/nav-tracking-mitigations/
https://privacycg.github.io/nav-tracking-mitigations/
https://github.com/brave/adblock-lists/blob/ 1453e599881854f970ab9164a104104ea9ec139f/brave-lists/debounce.json
https://github.com/brave/adblock-lists/blob/ 1453e599881854f970ab9164a104104ea9ec139f/brave-lists/debounce.json
https://github.com/brave/adblock-lists/blob/ 1453e599881854f970ab9164a104104ea9ec139f/brave-lists/debounce.json
https://www.statista.com/statistics/237974/online-advertising-spending-worldwide/
https://www.statista.com/statistics/237974/online-advertising-spending-worldwide/
https://brave.com/privacy-updates/16-unlinkable-bouncing/
https://www.topdraw.com/insights/is-online-advertising-expensive/
https://www.topdraw.com/insights/is-online-advertising-expensive/
https://www.bbc.com/news/technology-60138876
https://webkit.org/tracking-prevention-policy/
https://webkit.org/tracking-prevention-policy/
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://www.webshrinker.com/
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://github.com/privacycg/proposals/issues/6

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Crawling the Web
	3.2 Detecting potential UID Smuggling
	3.3 Synchronizing multiple crawlers
	3.4 Impersonating different browsers
	3.5 Impersonating different users
	3.6 Identifying Potential UID Smuggling
	3.7 Identifying UIDs
	3.8 Implementation

	4 Ethics
	5 Results
	5.1 Redirectors
	5.2 Originators and Destinations
	5.3 Navigation Paths

	6 Limitations
	7 Countermeasures
	7.1 Existing Mitigations
	7.2 Proposed Mitigations

	8 Related Work
	8.1 Prior work on differentiating UIDs
	8.2 Related work on cookie syncing
	8.3 Other related work

	9 Conclusion
	References

