
Improving Web Privacy And
Security with a Cost-Benefit

Analysis of the Web API

!1

Pete Snyder 
Thesis Defense

Committee: Christopher Kanich
Venkat Venkatakrishnan 
Jakob Eriksson 
Stephen Checkoway 
Damon McCoy

!2

The Web API

Only low-risk

Only frequently used

Frequently Used

Only frequently
beneficial

User Serving

Security and Privacy Risky

Thesis Questions

• Q1: Can we quantitatively distinguish between high and low benefit, and
high and low cost, browser features?

• Q2: Can we use this information to improve privacy and security for web
users?

!3

Outline
•Background

•Measuring use

•Measuring cost vs. benefit

•Applying findings to “current web”

•Applying findings to “future web”
!4

Outline
•Background

•Measuring use

•Measuring cost vs. benefit

•Applying findings to “current web”

•Applying findings to “future web”
!5

What is the Web API?

• Browser implemented functionality

• Provided to websites as JavaScript
methods, events, structures

• Sites authors use these browser
capabilities to create interactive sites

• Cross browser (mostly)

!6

What the Web API Is Not
• Internals (networking stack, TLS, etc.)

• Browser interface

• Extensions

• Plugins

• Static documents

• (generally) anything browser specific

!7

What is In the Web API?
• Document manipulation

• AJAX / server requests

• Cookies

• Browser navigation

• Complex graphics
animations

• WebGL

• Cryptographic
operations

• Parallel operations

• Font operations

• Styling / presentation

• Ambient light sensing

• Peer-to-peer networking

• Audio synthesis

• “Beacons”

• Geolocation

• Gamepads

• Vibration

• High resolution timers

• DRM

• SVG animations

• Speech synthesis

• Battery status

• Virtual reality support

• Selection events

• Fetch API

• Shared memory

• ResourceStats API

• Gesture support

• Pause Frame API

• CSS Paint API

• WebUSB

• Device Memory

• Server Timing

• etc.
!8

Who Defines Web Standards?
• De Jure Standardzation

• W3C, WHATWG, Khronos Group

• E.g. WebGL, Web USB, WebVR

• De Facto Standardization

• Browser competition, retroactive de facto standardization

• E.g. innerHTML, WebExtension, early DOM standards

!9

Terms
• Feature 

A single, JS accessible, function, data structure or event

• Standard 
A set of “features”, defined in a standards document (or subsection of a
standards document), designed to accomplish a similar set of goals

• Web API 
Set of every feature in every standard, or union of all “standards”

!10

Outline
•Background

•Measuring use

•Measuring cost vs. benefit

•Applying findings to “current web”

•Applying findings to “future web”
!11

Measuring Feature Use

!12

Snyder, Peter, Lara Ansari, Cynthia Taylor, and Chris Kanich. 
"Browser feature usage on the modern web." IMC 2016

Standard Use vs Benefit

!13

Available Functionality

Used Functionality

Used Functionality without  
Advertising + Tracking

User Beneficial Functionality

Standard Use vs Benefit

!14

Available Functionality

Used Functionality

Used Functionality without  
Advertising + Tracking

User Beneficial Functionality

Measuring Feature Use
Methodology

!15

Standard Use vs Benefit

!16

Available Functionality

Used Functionality

Used Functionality without  
Advertising + Tracking

User Beneficial Functionality

Available Functionality: Data Set

• Representative Browser

• Firefox 43.0.1

• Open source

• Standards focused

!17

Available Functionality: Data Set

• Firefox WebIDL

• 1,392 features

• 74 standards and sub-
standards

AudioContext.prototype.createChannelSplitter 
OscillatorNode.prototype.setPeriodicWave 

AudioNode.prototype.connect 
 

Crypto.prototype.getRandomValues 
SubtleCrypto.prototype.encrypt 

SubtleCrypto.prototype.generateKey 
 

WebGLRenderingContext.prototype.bufferData 
WebGLRenderingContext.prototype.scissor 

 
Navigator.prototype.getBattery 

navigator.battery 
…  
…  
…  
…  
…  

1,382 more examples

Web Audio

Web Crypto

WebGL

Battery Status

!18

Standard Use vs Benefit

!19

Available Functionality

Used Functionality

Used Functionality without  
Advertising + Tracking

User Beneficial Functionality

Problem Area Bounds

• Anonymous and {no, low} trust environments

• Only consider costs and benefits to users

• Site and developer interests left out

!20

Used Functionality: Methodology

• Alexa 10k to represent the web

• Too much for a manual review

• Javascript makes static analysis difficult

• Automation with extension-based measurement

!21

 22

1 Each browser requests
the selected page

Proxy injects hooks at
beginning of <head>

2
Each browser records
every feature use

3

vanilla,example.com,Crypto.getRandomValues(),1
vanilla,example.com,Node.cloneNode(),10

ghostery,example.com,Node.cloneNode(),10

abp,example.com,Crypto.getRandomValues(),1
abp,example.com,Node.cloneNode(),4

Measuring Code Injection

60 sec example.org

 23

Measuring Code Injection

http://example.org

60 sec

60 60 60

example.org

example.org/path-1
example.org/path-3

example.org/path-2

 24

Measuring Code Injection

http://example.org
http://example.org
http://example.org
http://example.org

60 sec

60

60 6060

60

60 6060

60

60 6060

example.org

example.org/path-1
example.org/path-3

example.org/path-2

 25

Measuring Code Injection

http://example.org
http://example.org
http://example.org
http://example.org

 26

Domains measured 9,733

Total website
interaction time 480 days

Web pages visited 2,240,484

Feature invocations
recorded 21,511,926,733

• 5 times per domain

• Every site in Alexa 10k

• 4 browser
configurations

 27

Automated Measurement

Standard Use vs Benefit

!28

Available Functionality

Used Functionality

Used Functionality without  
Advertising + Tracking

User Beneficial Functionality

Removing Tracking and Advertising

!29

60
sec

60 60 60

example.org

example.org/path-1
example.org/path-3

example.org/path-2

 30

Measuring Code Injection

+

Measuring Feature Use
Results

!31

 32

Standard Popularity

●

●

●

●

●
●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●0%

25%

50%

75%

100%

0% 25% 50% 75%

Portion of all websites

Po
rti

on
 o

f a
ll

we
bs

ite
 v

is
its

 33

HTML: History

Timing Control

Standard vs Site Popularity

●
●

●

●●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●0

2500

5000

7500

2006 2008 2010 2012 2014 2016

Standard introduction date

Si
te

s
us

in
g

st
an

da
rd

● block rate < 33%
33% < block rate < 66%
66% < block rate

 34

Selectors API
XMLHttpRequest

Standard Popularity by Date

AJAX

ALS

BA BE

CO

CSS−CR

CSS−FO

CSS−OM

CSS−VM

DO

DOM

DOM1

DOM2−C

DOM2−E

DOM2−H

DOM2−S

DOM2−T

DOM3−C

DOM3−X

DOM4

DOM−PS

DU

E

EC

EME

F

FA

FULL

GEO

GIM

GP

H−B

H−C

H−CM

H−HI

H−P

HRTHTML HTML5

HTML51

H−WB

H−WS

H−WW

IDB

MCD

MCS

MSE

MSR

NS

NT

PE
PL

PT

PT2

PV

RT

SD

SEL

SLC

SO

SVG

SW

TC

TPE

UIE

URL

UTL

V

WCR

WEBA

WEBGL

WEBVTT

WN
WRTC

10

100

1,000

10,000

0% 25% 50% 75% 100%

Block rate

S
ite

s
u

si
n

g
 t

h
is

 s
ta

n
d

a
rd

Figure 6: Popularity of standards versus their block rate, on a log scale.

●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

PT2

UIE
WCR

WRTC

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Ad block rate

Tr
a
ck

in
g
 b

lo
ck

 r
a
te

Sites using feature

● ● ● ●100 101 102 103

Figure 7: Comparison of block rates of standards using
advertising vs. tracking blocking extensions.

Column five of table 2 shows the number of CVEs associ-
ated with the standard’s implementation in Firefox within
the last three years. As the table shows, some implemen-
tations of web standards have been associated with a large
number of security bugs even though those standards are not
popular on the web. Other standards are associated with a
large number of security vulnerabilities despite being blocked
by advertising and tracking blocking extensions.

For example, the Web Audio API [4] standard is unpopu-
lar with website authors, and implementing it the browser
though has exposed users to a substantial number of security
vulnerabilities. We observed the Web Audio API standard
in use on fewer that 2% of sites in our collection, but its im-
plementation in Firefox is associated with at least 10 CVEs
in the last 3 years. Similarly, WebRTC [9] is used on less
than 1% of sites in the Alexa 10k, but is associated with 8
CVEs in the last 3 years.

The Scalable Vector Graphics [13] standard is an example
of a frequently blocked standard that has been associated
with a significant number of vulnerabilities. The standard is
very frequently blocked by advertising and tracking blocking
extensions; the standard is used on 1,554 sites in the Alexa
10k, but is prevented from executing in 87% of cases. At
least 14 CVE’s have been reported against Firefox’s imple-
mentation of the standard in the last 3 years.

5.7 Site Complexity
We also evaluated sites based on their complexity. We

define complexity as the number of standards used on a given
website. As Figure 8 shows, most sites use many standards:
between 14 and 32 of the 74 available in the browser. No
site used more than 41 standards, and a second mode exists
around the zero mark, showing that a small but measurable
number of sites use little to no JavaScript at all.

% of Usage blocked by Ghostery and Adblock

#

Standard Popularity vs Blocking

CSS: Object Model

HTML: Channel Messaging

Standard Use vs Benefit

!36

Available Functionality

Used Functionality

Used Functionality -  
(Advertising + Tracking)

User Beneficial Functionality

Outline
•Background

•Measuring use

•Measuring cost vs. benefit

•Applying findings to “current web”

•Applying findings to “future web”
!37

Measuring Feature Cost vs. Benefit

!38

Snyder, Peter, Cynthia Taylor, and Chris Kanich. "Most Websites Don't
Need to Vibrate: A Cost-Benefit Approach to Improving Browser

Security." CCS, 2017

Standard Use vs Benefit

!39

Available Functionality

Used Functionality

Used Functionality without  
Advertising + Tracking

User Beneficial Functionality

Feature Cost vs. Benefit
Methodology

!40

Feature Cost vs. Benefit: Methodology

• Measuring Benefit

• Number of sites that “need” a feature

• Measuring Cost

• References in peer-reviewed literature

• Recent related vulnerabilities

• Additional code complexity

!41

Measuring Feature Benefit (1/3)
• Intuition: Web API standards that are less frequently needed to

accomplish user-serving tasks are less beneficial to users.

• Metric: What % of websites break when a standard is removed from the
browser?

• ↑ means more beneficial, ↓ means less beneficial

• Only considers benefit to browser users (not site owners)

• Only considering the anonymous / no-trust case

!42

Measuring Feature Benefit (2/3)
• For each of the 74 standards in the browser:

• Randomly select 40 sites using the standard

• Have two students independently visit the site for 60 seconds

• Remove the standard from the browser, revisit site for 60 seconds

• Record if they were able to accomplish "the site's main purpose"

• 96.74% agreement between testers

!43

Measuring Feature Benefit (3/3)

• Ranking System

• 1: No visible difference

• 2: Some difference, but didn't affect core functionality

• 3: Core functionality affected

• 96.74% agreement between testers (1 & 2 vs 3)

!44

Feature Removal Strategy

• Problem

• Removing functions from the environment will break unrelated code

• Lead to over count in site need

• Goal

• Want to block page access to functionality

• Have other code run as normal

!45

!46

const canvas = document.createElement("canvas");

const gl = canvas.getContext("webgl");
const format = gl.getShaderPrecisionFormat(
 gl.VERTEX_SHADER,
 gl.MEDIUM_FLOAT
);
console.log(format.precision); // Finger printing

document.getElementById("some-element");

!47

WebGLRenderingContext.prototype.getShaderPrecisionFormat = null;
const canvas = document.createElement("canvas");

const gl = canvas.getContext("webgl");
const format = gl.getShaderPrecisionFormat(// Throws
 gl.VERTEX_SHADER,
 gl.MEDIUM_FLOAT
);
console.log(format.precision); // Finger printing

// Never Called
document.getElementById("some-element");

!48

WebGLRenderingContext.prototype.getShaderPrecisionFormat = () => null;
const canvas = document.createElement("canvas");

const gl = canvas.getContext("webgl");
const format = gl.getShaderPrecisionFormat(
 gl.VERTEX_SHADER,
 gl.MEDIUM_FLOAT
);
console.log(format.precision); // Throws

// Never Called
document.getElementById("some-element");

!49

WebGLRenderingContext.prototype.getShaderPrecisionFormat = new Proxy(…);
const canvas = document.createElement("canvas");

const gl = canvas.getContext("webgl");
const format = gl.getShaderPrecisionFormat(// Proxied "call" operation
 gl.VERTEX_SHADER,
 gl.MEDIUM_FLOAT
);
console.log(format.precision); // Proxied "get" operation

// Code execution continues as expected
document.getElementById("some-element");

!50

const blockingProxy = new Proxy(function () {}, {
 get: function (ignore, property) {

 if (property === Symbol.toPrimitive) {
 return toPrimitiveFunc;
 }

 if (property === "valueOf") {
 return toPrimitiveFunc;
 }

 return blockingProxy;
 },
 set: function () {
 return blockingProxy;
 },
 apply: function () {
 return blockingProxy;
 },
 ownKeys: function () {
 return unconfigurablePropNames;
 },
 has: function (ignore, property) {
 return (unconfigurablePropNames.indexOf(property) > -1);
 }
});

!51

WebGLRenderingContext.prototype.getShaderPrecisionFormat = new Proxy(…);
const canvas = document.createElement("canvas");

const gl = canvas.getContext("webgl");
const format = gl.getShaderPrecisionFormat(// Proxied "call" operation
 gl.VERTEX_SHADER,
 gl.MEDIUM_FLOAT
);

format.get("these").things[3].thatDo().not.exist;

// Code still continues as expected
document.getElementById("some-element");

Measuring Benefit Summary

• Only a subset of the standards in Web API is used

• Users only notice when a subset of those standards are removed

• If users don't noticed when they're not available -> not useful

!52

Per-Standard Cost

• Published attacks using the standard

• Past vulnerabilities associated with the standard

• Code complexity added by the standard

!53

Standard Cost: Related Research

• Intuition: Functionality frequently leveraged in attacks in academic
publications poses a greater cost to S&P.

• Metric: How many papers in top research conferences use a standard in
their attack?

• Past 5 years of 10 top security conferences and journals (2010-2015)

• USENIX, S&P, NDSS, CCS, ESORICS, WOOT, ACSAC, Cryptology, etc

!54

Standard Cost: Past Vulnerabilities
• Intuition: Functionality that has harmed security and privacy in the past

should be treated with greater caution.

• Metric: How many CVEs have been filed against a standard's implementation
in Firefox

• Look for all CVEs against Firefox since 2010

• Where possible, attribute to a standard

• 1,554 CVEs in general, 175 attributable to a standard

• Distinguish CVEs associated with a standard and other parts of the browser

!55

Standard Cost: Past Vulnerabilities
 CVE named Web API Standard 117 66.9%

 CVE named JS method unique to a Web API Standard 32 18.3%

 CVE named C++ method uniquely tied to a Web API Standard 21 12%

 CVE named functionality uniquely associated with Web API Standard 5 2.8%

 Total 175 100%

!56

Standard Cost: Code Complexity

• Intuition: Functionality that adds greater complexity to the browser code
base poses a greater cost to S&P.

• Metric: How many lines of code are uniquely in the browser to support
each browser standard?

• Static analysis of C++ implementation code in Firefox

!57

Standard Cost: Code Complexity

1. Build call-graph using Clang and Mozilla's DXR tools

2. Identify entry point into call graph for each JS end point in the standard

3. Remove those entry points and identify newly orphaned nodes

4. Attribute LOC in orphaned nodes as being code uniquely attributable to
the standard

5. Remove newly orphaned nodes, GOTO 4

!58

Standard Cost: Code Complexity

interface BatteryManager {
 readonly charging;
 readonly chargingTime;
 readonly dischargingTime;

};

mozilla::dom::BatteryManagerBinding::
charging

mozilla::dom::BatteryManagerBinding::
chargingTime

mozilla::dom::BatteryManagerBinding::
dischargingTime

mozilla::dom::BatteryManager::
Charging

mozilla::dom::BatteryManager::
ChargingTime

mozilla::dom::BatteryManager::
DischargingTime

1

2

3

3

3

4

4

Standardized interface
description

Automatically generated
binding functions

Functions used exclusively
for implementing the Battery API

!59

Standard Cost: Code Complexity

• Caveats and short comings

• Does not include third party code

• Does not include code shared between standards

• Metric: # lines of code unique to standard in Web API

!60

Methodology Summary
• Alexa 10k as representative of the internet

• Firefox 43.0.1 as representative of browsers

• One metric for measuring benefit

• Site break rate

• Three metrics for measuring cost

• CVEs, academic literature, lines of code

!61

Feature Cost vs. Benefit
Results

!62

Standard Benefit
• Most standards provide very little

benefit to browser users

• For 60% of standards, no
measurable impact on browsing
when they're removed

• Sometimes because the standard
was never used (e.g. WebVTT)

• Sometimes because the standard
is intended to not be visible 
(e.g. Beacon)

0

10

20

30

40

50

0% 25% 50% 75%
Sites Broken Without this Feature

N
um

be
r o

f S
ta

nd
ar

ds

DOM 2: Core
89%

DOM 1
63%

SVG 
Web Workers 

Resource Timing 
Gamepad 

CSSOM View 
Ambient Light
Battery Status 

High Res. Timing
Channel Messaging

etc…
0%

AJAX
32%

!63

Standard Cost: Related Research (1/2)
• 20 papers using 23 standards, 51 standards were never implicated

• Examples

• Breaking sandbox isolations with the High Resolution Timers API 
EX: Andrysco, et al. "On subnormal floating point and abnormal timing." S&P 2015

• Fingerprinting and privacy attacks using Canvas API  
Ex: Englehardt and Narayanan. "Online tracking: A 1-million-site measurement and
analysis." CCS 2016

• Recovering length of cross origin responses using Fetch API 
Ex: Van Goethem, et al. "Request and Conquer: Exposing Cross-Origin Resource
Size." USENIX 2016.

!64

Standard Cost: Related Research (2/2)
High Resolution Time

Level 2 8 IEEE 2015, CCS 2015 (3), NDSS 2017, ESORICS 2015, WOOT 2014, 
CCS 2013

HTML: The Canvas
Element 7 CCS 2014, ACSAC 2016, NDSS 2017, CCS 2016, WOOT 2014, 

CCS 2013, S&P 2016

Battery Status API 4 ACSAC 2016, CCS 2016, S&P 2013, Cryptology 2015 

WebGL 4 ACSAC 2016, NDSS 2017, WOOT 2014, S&P 2016

Service Workers 3 CCS 2015 (2), USENIX 2016

Fetch 3 CCS 2015 (2), USENIX 2016

Web Storage 3 ACSAC 2016, WOOT 2014, CCS 2015

!65

Standard Cost: CVEs
• CVEs are distributed unevenly

• A small number of Web API
standards account for most
CVEs since 2010

• Many frequently implicated
standards are rarely used /
needed

• Suggests areas for S&P benefit

AJAX
DOM

DOM1

DOM2−C

DOM2−E

DOM2−S H−C

H−WW

HTML

SVG

WEBA
WEBGL

WRTC0%

25%

50%

75%

100%

0 10 20 30
Attributed High or Severe CVEs Since 2010

Si
te

s
Br

ok
en

 W
ith

ou
t t

hi
s

Fe
at

ur
e

!66

Standard Cost: Implementation Complexity

• 75,650 lines uniquely 
attributable

• Widely different costs between
standards

• Undercounts because of:

• third party libraries

• shared code

AJAX

DOM

DOM1

DOM2−C

DOM2−E

DOM2−S

H−C

HTML

HTML5

IDB SVGWEBA

WEBGL0%

25%

50%

75%

100%

0 5000 10000 15000 20000
Exclusively Used Lines of Code

Si
te

s
Br

ok
en

 W
ith

ou
t t

hi
s

Fe
at

ur
e

WebRTC 
>500,000

!67

!68

Standard Name Abbreviation # Alexa 10k Site Break Agree # CVEs # High or % ELoC Enabled
Using Rate % Severe attacks

WebGL WEBGL 852 <1% 93% 31 22 27.43 [15, 21, 34, 40]
HTML: Web Workers H-WW 856 0% 100% 16 9 1.63 [30, 34]
WebRTC WRTC 24 0% 93% 15 4 2.48 [15, 26]
HTML: The canvas element H-C 6935 0% 100% 14 6 5.03 [12, 15, 21, 26, 34, 38, 40]
Scalable Vector Graphics SVG 1516 0% 98% 13 10 7.86
Web Audio API WEBA 148 0% 100% 10 5 5.79 [15, 26]
XMLHttpRequest AJAX 7806 32% 82% 11 4 1.73
HTML HTML 8939 40% 85% 6 2 0.89 [13, 46]
HTML 5 HTML5 6882 4% 97% 5 2 5.72
Service Workers SW 0 0% - 5 0 2.84 [28, 59, 60]
HTML: Web Sockets H-WS 514 0% 95% 5 3 0.67
HTML: History Interface H-HI 1481 1% 96% 5 1 1.04
Indexed Database API IDB 288 <1% 100% 4 2 4.73 [12, 15]
Web Cryptography API WCR 7048 4% 90% 4 3 0.52
Media Capture and Streams MCS 49 0% 95% 4 3 1.08 [57]
DOM Level 2: HTML DOM2-H 8956 13% 89% 3 1 2.09
DOM Level 2: Traversal and Range DOM2-T 4406 0% 100% 3 2 0.04
HTML 5.1 HTML51 2 0% 100% 3 1 1.18
Resource Timing RT 433 0% 98% 3 0 0.10
Fullscreen API FULL 229 0% 95% 3 1 0.12
Beacon BE 2302 0% 100% 2 0 0.23
DOM Level 1 DOM1 9113 63% 96% 2 2 1.66
DOM Parsing and Serialization DOM-PS 2814 0% 83% 2 1 0.31
DOM Level 2: Events DOM2-E 9038 34% 96% 2 0 0.35
DOM Level 2: Style DOM2-S 8773 31% 93% 2 1 0.69
Fetch F 63 <1% 90% 2 0 1.14 [28, 59, 60]
CSS Object Model CSS-OM 8094 5% 94% 1 0 0.17 [46]
DOM DOM 9050 36% 94% 1 1 1.29
HTML: Plugins H-P 92 0% 100% 1 1 0.98 [13, 15]
File API FA 1672 0% 83% 1 0 1.46
Gamepad GP 1 0% 71% 1 1 0.07
Geolocation API GEO 153 0% 96% 1 0 0.26 [35, 63]
High Resolution Time Level 2 HRT 5665 0% 100% 1 0 0.02 [16, 28, 30, 31, 34, 38, 49, 59]
HTML: Channel Messaging H-CM 4964 0% 0.025 1 0 0.40 [55, 62]
Navigation Timing NT 64 0% 98% 1 0 0.09
Web Noti�cations WN 15 0% 100% 1 1 0.82
Page Visibility (Second Edition) PV 0 0% - 1 1 0.02
UI Events UIE 1030 <1% 100% 1 0 0.47
Vibration API V 1 0% 100% 1 1 0.08
Console API CO 3 0% 100% 0 0 0.59 [34]
CSSOM View Module CSS-VM 4538 0% 100% 0 0 2.85 [13]
Battery Status API BA 2317 0% 100% 0 0 0.15 [15, 26, 46, 48]
CSS Conditional Rules Module Lvl 3 CSS-CR 416 0% 100% 0 0 0.16
CSS Font Loading Module Level 3 CSS-FO 2287 0% 98% 0 0 1.24 [13, 15]
DeviceOrientation Event DO 0 0% - 0 0 0.06 [15, 23]
DOM Level 2: Core DOM2-C 8896 89% 97% 0 0 0.29
DOM Level 3: Core DOM3-C 8411 4% 96% 0 0 0.25
DOM Level 3: XPath DOM3-X 364 1% 97% 0 0 0.16
Encrypted Media Extensions EME 9 0% 100% 0 0 1.91
HTML: Web Storage H-WB 7806 0% 83% 0 0 0.55 [15, 34, 63]
Media Source Extensions MSE 1240 0% 95% 0 0 1.97
Selectors API Level 1 SLC 8611 15% 89% 0 0 0.00
Script-based animation timing control TC 3437 0% 100% 0 0 0.08 [46]
Ambient Light Sensor API ALS 18 0% 89% 0 0 0.00 [46, 47]

Table 4: This table includes data on all 74 measured Web API standards, excluding the 20 standards with a 0% break rate, 0 associated CVEs and accounting for
less than one percent of measured e�ective lines of code:

(1) The standard’s full name
(2) The abbreviation used when referencing this standard in the paper
(3) The number of sites in the Alexa 10k using the standard, per [54]
(4) The portion of measured sites that were broken by disabling the standard. (see Section 4.4)
(5) The mean agreement between two independent testers’ evaluation of sites visited while that feature was disabled (see Section 4.4)
(6) The number of CVEs since 2010 associated with the feature
(7) The number of CVEs since 2010 ranked as “high” or “severe”
(8) The percentage of lines of code exclusively used to implement this standard, expressed as a percentage of all 75,650 lines found using this methodology

(see Section 4.5.2).
(9) Citations for papers describing attacks relying on the standard

Standard Use vs Benefit

!69

Available Functionality

Used Functionality

Used Functionality without  
Advertising + Tracking

User Beneficial Functionality

Outline
•Background

•Measuring use

•Measuring cost vs. benefit

•Applying findings to “current web”

•Applying findings to “future web”
!70

Measuring Feature Cost vs. Benefit

!71

Snyder, Peter, Cynthia Taylor, and Chris Kanich. "Most Websites Don't
Need to Vibrate: A Cost-Benefit Approach to Improving Browser

Security." CCS, 2017

…along with significant work conducted after publication.

Motivation from Results (1/2)

1. Web API standards differ hugely in the benefit and cost they provide
browser users.

2. All standards are equally available to web sites (with rare exceptions)

3. Users' privacy and security would be improved, at little cost, if non-
trusted sites we're only given access to useful, safe features (by default).

!72

Motivation from Results (2/2)

Break Rate # CVEs # Attacks % LOC

DOM2: Core 89% 0 0 0.29%

AJAX 32% 11 0 1.73%

Canvas 0% 13 7 5.03%

WebGL <1% 31 4 27.43%

!73

WebAPI Access Controls

• Browser extension that imposes
access controls on Web API

• Users can restrict site access to
functionality only when trusted /
needed.

• Default configurations, user
configurable

!74

Usability Evaluation

• Interesting idea, but is it feasible (would anyone use it)

• Subjective measurements needed

• Impossible to evaluate 742 possible configurations, on all websites

• Create plausible extension configurations

!75

Evaluated Configurations

• Two tested, realistic, 
configurations

• Conservative: Block default
access to 15 rarely needed
standards

• Aggressive: Block 45 rarely
needed and / or high-risk
standards

Standard Conservative Aggressive
Beacon X X

DOM Parsing X X
Full Screen X X

High Resolution Timer X X
Web Sockets X X

Channel Messaging X X
Web Workers X X

Index Database API X X
Performance Timeline X X

SVG 1.1 X X
UI Events X X

Web Audio X X
WebGL X X

Ambient Light X
Battery Status X

31 more… X

Evaluation Methodology
1. Select Representative sites

• Popular: Non-pornographic, English sites in Alexa 200 (175 sites)

• Less Popular: Random sampling of the rest of the Alexa 10k (155 sites)

2. Have two students visit each site for 60 seconds in default browser

3. Repeat visit in browser modified with conservative blocking configuration

4. Repeat visit in browser modified with aggressive blocking configuration

5. Compared break rates, both numerically and textually

!77

Evaluation Findings
Conservative Aggressive

Standards Blocked 15 45

Previous CVEs 
Codepaths Avoided 89 (52.0%) 123 (71.9%)

LOC "Removed" 37,848 (50.00%) 37,848 (70.76%)

% Popular Sites
Broken 7.14% 15.71%

% Less Popular 
Sites Broken 3.87% 11.61%

• Significant privacy and
security benefits to blocking
certain standards

• Tradeoff between S&P and
functionality

• Testers agreed 97.6%-98.3%
of the time

!78

Usability Comparison
% Popular

Sites Broken
% Unpopular Sites

Broken Sites Tested

Conservative
Blocking 7.14% 3.87% 330

Aggressive
Blocking 15.71% 11.61% 330

Tor Browser
Bundle 16.28% 7.50% 100

No Script 40.86% 43.87% 300

• How realistic are these
tradeoffs?

• Repeat measurement using
other popular browser privacy
techniques

• Techniques compose, are not
replacements

!79

Improving Usability
• Moved from fixed blocking configurations to dynamic

• Trust context aware (HTTPS, logged in, privacy modes, etc.)

• Crowd sourced / trusted rule lists (EasyList model)

• Third party vs. first party code

• Dwell time

• Single purpose applications

!80

Lessons from Deployment
• > 1k users

• Actual, real world contributors!

• Publicity among privacy and
security enthusiasts / activists

• Firefox and Chrome (and
related…)

• https://github.com/snyderp/
web-api-manager

!81

Lessons Learned from Deployment

• Standards may be sub-optimal level of granularity

• Often its just one feature (apple) that ruins the barrel

• Standards change fast

• WebVR (2 versions!), Speech Synthesis, WebUSB, Payments API etc

• Common vulnerability in DOM modifying browser extensions

!82

WebExtension Model

!83

Frame 
Created

DOM
Created

Initial Script
Executes

New Script 
Fetched

WebExtension Model

!84

Frame 
Created

DOM
Created

Initial Script
Executes

New Script 
Fetched

document_start

document_end

document_idle

WebExtension Model

!85

Frame 
Created

DOM
Created

Initial Script
Executes

New Script 
Fetched

document_start

document_end

document_idle

WebExtension Model

Frame
Create

DOM
Created

Initial
Script

New
Script 

document_start

Frame
Create

DOM
Created

Initial
Script

New
Script 

document_start

Parent Frame

Child Frame

WebExtension Vulnerability

Frame
Create

DOM
Created

Initial
Script

New
Script 

document_start

Frame
Create

DOM
Created

Initial
Script

New
Script 

document_start

Parent Frame

Child Frame

WebExtension Vulnerability
• Reported to Firefox, Chrome, Brave, EFF, uBlock Origin, etc

• Fixed in Brave

• Acknowledged by Firefox, EFF (Privacy Badger), and uBlock Origin

• Still waiting in Chromium bug queue

• Possible fixes

• Freeze parent frames while child frame is being set up

• Move blocking into core browser functionality (TBB did, Brave now does)

!88

Outline
•Background

•Measuring use

•Measuring cost vs. benefit

•Applying findings to “current web”

•Applying findings to “future web”
!89

Measuring Feature Cost vs. Benefit

!90

Snyder, Peter, Laura Watiker, Cynthia Taylor, and Chris Kanich. 
“CDF: Predictably Secure Web Documents.” ConPro, 2017

…along with significant work conducted after publication.

Findings to Build On

• Most sites don’t need most functionality

• Small amount of functionality gets users most of the benefits of the web

• JavaScript it difficult to predict benign from safe behavior

• Users and developers really like web application model

• Decentralized, open, well understood application model

!91

Goals for New Web Systems
• Improve privacy for non-technical users

• Predictable, constrained information flow

• Improved security

• Reduced attack surface, well tested code paths

• Predictable execution

• Statically determinable execution effects

!92

CDF Approach

!93

Approach Goal / Purpse

Declarative syntax - Statically predictable behavior

- Easy to write and check

- Easy(er) to constan behavior

Trusted base interactive additions - Write the tricky parts once, heavily-vet them

- Allow sites to declare invocation parameters

Constrain information flow through syntax - Disallow sending client-held information to 3rd party

- Force server in the middle of third party

communication

Proxy and compiler trusted based additions - Compile statically-checked CDF into HTML+JS

- Build on existing browser engineering

CDF System

!94

Browser Proxy Server
1. Client Request

2. CDF File

3. CDF → HTML+JS

4. HTML+JS

5. Trusted JS

6. “Safe” Assets

CDF Example

!95

CDF Structure

!96

CDF Type Purpose in System Type Examples Current Analogue

Structure Define static document
structure

List, List Element, Image,
Video HTML tags

Event Define timer and user event
to respond to “timer trigger”, “mouse over” DOM events

Behavior Define what to do when an
Event occurs

“state transition”, “remove
subtree”, “change attribute” Javascript event handlers

Delta Define changes to the
current document

“cdf sub-document”,
“attribute”, “remove event”

AJAX response, 
WebSocket Response

System Evaluation
• Popular blog 

http://www.vogue.com/

• Online-banking 
https://www.bankofamerica.com/

• Social media 
https://twitter.com/

• Collaborative web application  
HotCRP

!97

CDF Take Aways

• Existing system: https://github.com/bitslab/cdf

• Most of the “power” of the HTML+JS isn’t needed for most of the web

• Most of the risk of the WebAPI isn’t worth the corresponding benefit

!98

https://github.com/bitslab/cdf

Outline
•Background

•Measuring use

•Measuring cost vs. benefit

•Applying findings to “current web”

•Applying findings to “future web”
!99

Conclusions

• Web is an enormously popular application system

• Web an enormously complicated system

• Its possible to evaluate the cost and benefit of discrete parts of a
complicated system

• Doing so has tangible security and privacy benefits on existing systems

• Those improvements can be used to guide the design of future systems

!100

Thank you!
Especially committee members and BITSLab comrades

!101

(…but especially committee members)
(…but especially Chris :)

